

*Corresponding author email address: A.R.Hosseinabadi@iaubeh.ac.ir

International Journal of Applied Optimization Studies

Year 2018 Volume 1 Issue 1 pp. 11-24

www.ijaos.com

A Gravitational Emulation Local Search Algorithm for Task

Scheduling in Multi-Agent System

Ali Asghar Rahmani Hosseinabadi1,* , Erfan Babaee Tirkolaee 2

11Young Researchers and Elite Club, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran

2Department of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Itan

Abstract

One of the challenges in designing Multi-Agent Systems (MAS) on agents is breaking

a job into several tasks and scheduling them among agents so that execution time is

reduced and energy consumption become optimized as well load balancing is

considered as a major factor on performance. On the other hands, one of the decisive

factors in task scheduling and load balancing among agents is how to deploy tasks on

agents. In this paper, a novel method is proposed based on a Gravitational Emulation

Local search (GELS) algorithm for task scheduling among agents and load balancing.

The performance of the proposed algorithm is evaluated in comparison with different

sized test problems. Finally, simulation results show that proposed algorithm can

solve the problem perfectly.

Original Article:

Received 2018-06-03

Revised 2018-07-20

Accept 2018-07-30

Keywords:

Gravitational

Emulation Local

search;

Multi-agent Systems;

Task Scheduling;

Prioritization.

1. Introduction

The increased complexity of distributed systems has led to the entry of new challenges to

the design of interactions and management of decentralized components in industrial and

research field. One way to overcome these new challenges is to provide more dynamic,

self- aware, consistent and optimal systems, like Multi-Agent Systems (MAS) [1]. A MAS

consists of several agents which are defined as software (hardware) entities deployed in a

specific environment and can react automatically to environmental changes [2]. An agent

has three basic characteristics: Reactivity, pro-activeness and Social ability. Reactivity

refers to the ability of an agent to react to changes in its external environment. Pro-

activeness indicates the objective behavior of the agent and social ability means that based

on Agent Communication language, agents can negotiate instead of sending data and then

interact with another agent [2]. Therefore agents are independent and autonomous entities

which can gain information from the environment and collaborate on solving complex

problems. Agents are used in many applications, such as real-time requirements including

communication systems, database search and retrieval, control systems, and sensor fusion

Int J Appl Optim Stud (IJAOS), Vol. 1 No. 1 Pages 11-24

[2]. A MAS is a collection of entities that interact with each other to solve a problem or to

reach a goal beyond the ability of one agent [3].

Figure 1 shows an outline of a MAS and interactions between agents. As we know, in

real-world there are complex problems that only one agent cannot solve it, so in such a

situation having a team of agents with the ability to communicate and sharing information

can be useful. It means that, instead of having a centralized approach in each agent,

solution goals and tasks must be distributed among the team. Such solutions can better

control the system and can be dynamically controlled in different situations. Each agent is

able to perform a unique task and delegates the rest tasks to other agents. This way, the

complexity level of the entire system is reduced to a controllable level [1].

Fig. 1. An overview of multi-agent systems [1].

MAS have some advantages over other traditional and central systems. Firstly, they

are suitable for large and dynamic distributed systems, and also have good flexibility and

scalability, because by increasing the size of the problem, it is possible to add more agents

to the system [3]. A MAS also works in a non-concurrent and parallel manner and is faster

and more efficient than centralized systems [3]. In addition, MAS is an open system, and

new tasks are created based on changes in the external environment and agents are used to

solve them [4]. According to the unique characteristics of the agents (mobility, autonomy

and load imbalance, etc.), if tasks are assigned without coordination, some agents become

overloaded very quickly, and this situation leads to a bottleneck situation for the system

[5]. Task scheduling problem is one of the main problems in MAS and suitable scheduling

techniques are needed to perform tasks with high efficiency. The aim of scheduling of

these systems is to reduce execution time and also the overhead of agents [4, 5]. In recent

years, different scheduling methods have been proposed for MAS that can be divided into

the following categories: task scheduling based on auction protocol [6, 7]; (2) forming

coalition methods [8, 9]; (3) social network based methods [10]; (4) decision theory based

methods [11]; (5) cooperative and non-cooperative participation based methods [12].

Optimization algorithms are categorized into two groups of exact algorithms and

approximate algorithms [13]. Optimization algorithms are a kind of intelligent algorithms

used to find optimal solutions. These algorithms have strategies for tackling from local

optimality and are applicable to a wide range of problems [13].

Int J Appl Optim Stud (IJAOS), Vol. 1 No. 1 Pages 11-24

In recent years, many optimization algorithms are developed for solving various

problems. Some of them are as follows: Genetic Algorithm (GA) [14], Ant Colony

Optimization (ACO) [15], Bee Colony Optimization (BCO) [16] Particle Swarm

Optimization (PSO) [17], Tabu Search (TS) [18] Simulated Annealing (SA) [19] and so

on.

Recently, a new algorithm named Gravitational Emulation Local Search (GELS)

Algorithm is proposed by Barry Webster in 2004 which is inspired by Newton's law for

optimization [20]. This algorithm is based on randomization concepts along with two

parameters of velocity and force which uses random numbers of existing local search

algorithms in order to avoid local optimum. The idea of this algorithm is based on the

principle of gravitational force in nature that causes objects to be attracted to each other so

that the heavier object has a greater gravitational force and applies it to other objects and

attracts objects with less weight [20].

So far we have noticed no report on using GELS algorithm in MAS. In this paper, a

new optimization algorithm named GELS is proposed to solve task scheduling in MAS.

The purpose of this algorithm is load balancing in the system and having the maximum

number of scheduled tasks.

The rest of the paper is organized as follow: Section 2 review some related works.

Section 3 explains GELS algorithm. The proposed algorithm is introduced in Section 4.

Simulation results and conclusion are presented in Sections 5 and 6 respectively.

2. Literature Review

By increasing global connectivity, In order to process the information in different parts of

the world, various distributed systems, including multi-agent systems, have been

implemented. In such environments, due to the difference in the volumes of processing

data in different nodes, the processing of some agents may be completed faster than others,

so the speed of the system depends on the longest processing time. So we need scheduling

mechanisms to speed up this process [5]. In recent years many methods have been

proposed, some of them are explained below.

Given the processing status of each agent, CPU power and the amount of calculation

of each user, and with the aim of reducing the system return time, Ranatunga et al. [21]

provided a fair and effective algorithm for scheduling in which an agent with the smallest

computational request has higher priority.

Adhau et al. [22] considered the time of sending resources and cost of execution and

control to propose a new algorithm named DMAS/RIS to allocate and send shared

resourcesto large and complex multi-purpose systems.

Hsie and Lin [23] proposed an algorithm for workflow scheduling for multi-agent

systems by combining multi-agent system, contract net protocol and workflow models

specified by Petri nets, in which original workflow scheduling problem is divided into

several sub-problems and are solved by agents.

Zhenqiang et al. [24] solved task scheduling problem with bottleneck resources by

considering imbalance of resource capacity in Production Scheduling System and

combining dynamic and autonomous agents. In this method, Bottleneck Resource Agent

(BRA) is used for finding bottleneck resources and Non-Bottleneck Resources Agent

(NBRA) is used for finding non-bottleneck resources and finally BAD is used to

Int J Appl Optim Stud (IJAOS), Vol. 1 No. 1 Pages 11-24

coordinate the relationship between the arrival time and delivery time of tasks in BRA and

NBRA.

Multi-agent scheduling model [25] is provided with the aim of improving the system

flexibility and reducing the return time of dynamic job shop scheduling. But the

combination of this method with optimization algorithms can lead to better scheduling.

Yumin and Shufen [26] proposed a new efficient and hybrid algorithm for Job-Shop

Scheduling using GA and a MAS with the aim of increasing performance and efficiency

and reducing the time of reaching global optimum.

The aim of the agile multi-agent scheduling system [27] is to increase fault tolerance

in uncertainties and increase system efficiency and reduce the makespan. This method uses

negotiation strategies to solve the problem.

LI and DU [28] combined MAS with GA and proposed a new method for Job Shop

Scheduling Problem (JSCP) which allows agents to choose optimum jobs dynamically.

This method utilizes a hybrid genetic algorithm to re-schedule jobs in order to reach global

optimum.

Nie et al. [29] proposed an agent-based dynamic scheduling model for FMS which

performs scheduling and control of the system through agent collaboration and without

interrupting the operation of the system and without user intervention. The proposed

method is capable of responding to dynamic changes including machine failure or out-of-

date tasks.

Shah et al. [30] proposed agent-based scheduling model for scheduling in grid

computing with the aim of increasing robustness, efficiency, performance, scalability, and

heterogeneity. APDRR scheduling algorithm proposed by Shah et al. [31] is a combination

of round robin and priority scheduling algorithms to simultaneously meet user goals and

increase system efficiency. Chronos MAS [32] is designed to set up user sessions; this

system assigns a smart regulator agent to each user. Users can schedule time, location, the

day of negotiation, based on user interests and preferences. In order to provide better

performance and better allocation, agents can learn from the user as well as interact with

other agents. For further studies on the application of MAS in solving various problems,

refer to [33-37].

3. The GELS algorithm

Many researchers have been working on the optimization problems and the applications

of the computers in order to optimize them [44-48]. In 1997, GLS algorithm was proposed

by Voudouris and Tesang [38] to search and solve complex problems for the first time. In

2004, Webster [20] called this method GELS and was used as a powerful local search

algorithm for solving complex problems. The main idea of GELS is based on gravitational

force, which causes to attract objects with each other such a way that heavy object has the

higher gravitational force and attract low weigh objects. The attraction force between two

objects depends on the distance between them [39-44].

In GELS algorithm, possible solutions in search space are divided into several categories

according to their fitness's. Each of these categories named a dimension of the solution and

there is initial velocity for them. Eq. (1) computes the gravitational force between Current

Solution (CU) and Candidate Solution (CA). This force (F) is added to velocity vector in

the path of current motion. If velocity exceeds the maximum value (threshold), maximum

Int J Appl Optim Stud (IJAOS), Vol. 1 No. 1 Pages 11-24

velocity becomes the current velocity, and if the velocity becomes negative due to this

force, the velocity is considered zero [43, 44].

2

)(

R

CACuG
F

 (1)

4. Proposed algorithm

In the proposed method, GELS Algorithm is used as a strategy for solving task scheduling

problem in MAS. The purpose of this algorithm is load balancing in the system and having

the maximum number of scheduled tasks. In the following, GELS_MAS is presented to get

a suitable solution for the problem in a reasonable time.

To provide an appropriate scheduling to perform N tasks by M agents, it is needed to

define some models for determining the status of agents. Therefore in this section, we

define the models of the proposed algorithm.

4.1. Agent load model

For optimal task scheduling, we must first determine agent's load according to agent's

distance from the service center and determine the cost of establishing this connection. So

agent's load is calculated in Eq. (2).

i i iW D C i I (2)

Where iW is the load of agent i, i={1,2,…,n}, iD indicates the distance of agent i from

the service center and iC is the cost of establishing this connection.

4.2. Agent credit model

In order to load balancing and assigning appropriate tasks to each agent in the process of

task scheduling in MAS, a credit model is needed. The system assigns a credit value to each

agent which is based on agent's load and decides which input task should be assigned to

which agent according to this credit value. An agent with higher credit value (an agent with

lower load) will have a greater chance of accepting input task as it is shown in Eq. (3).

𝐶𝑟𝑖 = 𝑀𝑎𝑥(𝑊𝑖) − 𝑊𝑖 (3)

Where 𝐶𝑟𝑖 is the credit of agent i, Max(𝑊𝑖) is the maximum load that can be assigned

to the agent and 𝑊𝑖 is the existing load on the agent. In this equation, agent's credit

decreases by increasing agent's load and vice versa.

4.3. Gravitational mass of agent

The gravitational mass of agents has a direct relationship with agent's capacity and the

distance between them. Agents' capacities and their distances to the center are used to

determine the gravitational mass between agents and service center and the average

capacities of two agents and the distance between them are used to determine the

gravitational mass between two agents (Eq. (4)).

Int J Appl Optim Stud (IJAOS), Vol. 1 No. 1 Pages 11-24

𝑀𝐴,𝐵 =
𝐷𝐴,𝐵×𝐶𝐴,𝐵

𝑉𝐴,𝐵
 (4)

Where, 𝑀𝐴,𝐵 is the gravitational mass between two agents, 𝐷𝐴,𝐵 is the distance between

two agents, 𝐶𝐴,𝐵 is agents’ loads, and 𝑉𝐴,𝐵 = 10 is the velocity between agents.

The initial velocity of each dimension of the solution is selected randomly in the

interval [1, 100] and in the proposed algorithm initial velocity is set to 10.

4.4. Defining solution dimensions

In the proposed method, each solution dimension can be considered equal to one task; in

fact, the number of solution dimensions is equal to the number of input tasks of the problem.

The neighbor of the CU is the task with the least distance from the center, the least

execution time and the highest velocity for the task of the CU of each agent and that task

has not been done so far.

4.5. Neighborhood definition

In the GELS algorithm, unlike other algorithms, neighbors are not searched randomly,

instead, each CU has different neighbors, each of which is based on a particular change

which is named the direction for moving towards the neighboring solution and all the

neighbors obtained this way are only based on this neighbor.

In the proposed method, the neighbor solution is obtained this way, the task with the

least distance and time and more velocity than CU is selected as a neighbor and CA for

each agent.

4.6. Fitness function

The purpose of the proposed algorithm is load balancing in the system and having the

maximum number of scheduled tasks. So a better solution is the one that holds the system

in a balanced state and also schedules more tasks. Eq. (5) shows the fitness function.

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = ∑ 𝑇𝑖

𝑀

𝑖=1

 (5)

Where M is the number of agents and 𝑇𝑖 indicates input task.

4.7. Gravitational force calculation

After choosing the best candidate solution, the gravitational force between CU and

candidate solution is calculated and added to the velocity dimension of the corresponding

solution. This force is the difference between the fitness function of CA and the fitness

function of the current solution. Therefore the gravitational force between two solutions is

calculated in Eq. (6).

𝐹 = 𝐺 ×
𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑐ℎ𝑖) − 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐ℎ𝑖)

𝑅2
 (6)

Int J Appl Optim Stud (IJAOS), Vol. 1 No. 1 Pages 11-24

4.8. Solution Method

In the mentioned problem, several tasks enter to the system. These tasks must be scheduled,

so that maximum numbers of tasks are performing and load on agents is balanced. In this

system, each task can be done by only one agent, but agents may perform more than one

tasks or nothing. Using this method we can have an appropriate allocation of tasks in the

system. In this method GELS algorithm is used. Initial or CU is obtained by sequentially

assigning tasks to the agents. Figure 2 shows a sample CU in which the length of the CU is

equal the number of agents and numbers inside cells indicates the number of input tasks.

For example task 1 is on agent 1, task 2 is on agent 2 … and task 6 is on agent 6.

Fig.2. A sample initial solution

Each generated solution is called a solution dimension which is obtained in next rounds

by changing CU based on gravitational force. The initial velocity of each solution

dimension is chosen randomly from [1, 100], which is set to 10 in the proposed algorithm.

The gravitational force between any generated solution having better fitness function and

its parent solution is calculated and added to the velocity dimension of that solution.

In order to generate next solution that is CA act based on the gravitational mass of

agents, so that the task given to an agent may be greater than the maximum capacity of that

agent, so according to the gravitational mass matrix, we must assign this task to an agent

with less gravitational mass. If better solution is obtained is considered as CA and

gravitational force between as CA and as CU is calculated and added to the velocity

dimension. Therefore, gravitational mass between agents is updated. This trend repeats

until the desired solution with the best fitness is obtained.

5. Simulation results

In this section, the simulation results obtained by the proposed algorithm and its

comparison with GA (according to [45]) are presented. The algorithm is coded in C#

programming language. It has been run on the system with the configuration of CPU 2.2

GHz and RAM 4 GB. The length of tasks scheduling on agents is one of the comparing

parameters for solving the Task Scheduling Problem in Multi-Agent System in line with

the evaluation of the proposed algorithm. The proposed algorithm is run for different sized

(small, medium and large) problems including multiple agents and multiple tasks (tasks are

assigned to the agents randomly). The input information is shown in Table 1.

Int J Appl Optim Stud (IJAOS), Vol. 1 No. 1 Pages 11-24

Table 1. Input information for test problems.

Problem #Agent #Task

Small sized

2 40

3 40

4 30

5 40

Medium sized

20 50

20 100

20 150

20 200

20 250

Large sized

10 100

10 150

10 200

10 250

10 500

Table 2 presents the comparison results of the proposed algorithm with GA. As it is

clear, our proposed algorithm could generate better solutions rather than GA and it has a

significant preference. The length of tasks scheduling is equal to the reduction of the

required time for performing tasks.

Table 2. The obtained results of the proposed algorithm in comparison with GA.

GELS_MAS GA [45]

#Task #Agent Problem

Best solution (makespan) Best solution (makespan)

1.35 2.67 40 2

Small

sized

5.17 8.74 40 3

3.54 6.89 30 4

4.07 7.23 40 5

1.20 3.45 50 20

Medium

sized

2.27 5.71 100 20

3.50 7.11 150 20

4.36 8.95 200 20

6.40 10.69 250 20

2.00 5.24 100 10

Large

sized

5.11 9.36 150 10

6.75 11.83 200 10

8.83 15.31 250 10

1.19 3.53 500 10

Figures 1-3 depicts the output results of the proposed algorithms for three problems.

As it is shown in figures, the algorithm could generate acceptable results.

Int J Appl Optim Stud (IJAOS), Vol. 1 No. 1 Pages 11-24

Fig. 1. The obtained results for 5 agents and 40 tasks.

Fig. 2. The obtained results for 20 agents and 200 tasks.

Int J Appl Optim Stud (IJAOS), Vol. 1 No. 1 Pages 11-24

Fig. 3. The obtained results for 10 agents and 250 tasks.

6. Conclusion

Nowadays, distributed computing model has been transformed to a developing concept.

Beside, agent scheduling is one of the main component of any practical agent system. In this

paper, a new Gravitational Emulation Local Search Algorithm based algorithm named

GELS_MAS is proposed for task scheduling problem in MAS with the objective of minimizing

its overall completion time or scheduling length. The main advantages of this algorithm are

reducing execution time and increasing the efficiency of the system. The performance of the

proposed algorithm is compared with Genetic Algorithm which has been presented in the

literature previously. The obtained results showed that proposed algorithm has a high efficiency

in solving task scheduling problem in Multi-agent System and can obtain better results. As an

applicable suggestion for future studies, another efficient algorithm can be developed in order

to generate much better solutions that may be achievable by hybridizing the algorithm with

some other algorithm such as GA.

References

[1] Morris, A. (2008). SAMSON: Strong multi-agent simulation of wireless sensor networks. Ph.D.,

thesis, University of Edinburgh, 1-87.

[2] Yang, R., & Wang, L. (2013). Development of multi-agent system for building energy and comfort

management based on occupant behaviors. Energy and Buildings, 56, 1-7.

[3] Baig, Z. A. (2012). Multi-agent systems for protecting critical infrastructures: A survey. Journal of

Network and Computer Applications, 35(3), 1151-1161.

Int J Appl Optim Stud (IJAOS), Vol. 1 No. 1 Pages 11-24

[4] Li, B., Zhang, X., & Wu, J. (2009, December). A Constrained Optimal Task Scheduling Problem in

Multi-Agent System. International Conference on Computational Intelligence and Software

Engineering, CiSE 2009, 1-4.

[5] Kim, Y. H., Han, S., Lyu, C. H., & Youn, H. Y. (2009, August). An efficient dynamic load balancing

scheme for multi-agent system reflecting agent workload. International Conference on

Computational Science and Engineering, 216-223.

[6] Shehory, O., & Kraus, S. (1998). Methods for task allocation via agent coalition formation. Artificial

intelligence, 101(1), 165-200.

[7] Choi, H. L., Brunet, L., & How, J. P. (2009). Consensus-based decentralized auctions for robust task

allocation. IEEE transactions on robotics, 25(4), 912-926.

[8] Tošić, P. T., & Agha, G. A. (2004, December). Maximal clique based distributed coalition formation

for task allocation in large-scale multi-agent systems. In International Workshop on Massively

Multiagent Systems, Springer, Berlin, Heidelberg, 104-120.

[9] Aknine, S., & Shehory, O. (2006, December). A feasible and practical coalition formation

mechanism leveraging compromise and task relationships. In Proceedings of the IEEE/WIC/ACM

international conference on Intelligent Agent Technology, IEEE Computer Society, 436-439.

[10] De Weerdt, M., Zhang, Y., & Klos, T. (2007, May). Distributed task allocation in social networks.

In Proceedings of the 6th international joint conference on Autonomous agents and multiagent

systems, ACM, 76.

[11] Abdallah, S., & Lesser, V. (2005, July). Modeling task allocation using a decision theoretic model.

In Proceedings of the fourth international joint conference on Autonomous agents and multiagent

systems, ACM, 719-726.

[12] Manisterski, E., David, E., Kraus, S., & Jennings, N. R. (2006, May). Forming efficient agent

groups for completing complex tasks. In Proceedings of the fifth international joint conference on

Autonomous agents and multiagent systems, ACM, 834-841.

[13] Talbi, E. G. (2009). Metaheuristics: from design to implementation. John Wiley & Sons, 74.

[14] Mitchell, M. (1998). An introduction to genetic algorithms. MIT press, 1-223.

[15] Dorigo, M., & Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical computer

science, 344(2-3), 243-278.

[16] Yonezawa, Y., & Kikuchi, T. (1996, October). Ecological algorithm for optimal ordering used by

collective honey bee behavior. Proceedings of the Seventh International Symposium in Micro

Machine and Human Science, 249-256.

[17] Bai, Q. (2010). Analysis of particle swarm optimization algorithm. Computer and information

science, 3(1), 180.

[18] Glover, F., & Laguna, M. (1998). Tabu search. In Handbook of combinatorial optimization,

Springer, Boston, MA, 2093-2229.

[19] Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing.

Science, 220(4598), 671-680.

Int J Appl Optim Stud (IJAOS), Vol. 1 No. 1 Pages 11-24

[20] Webster, B. L. (2004). Solving Combinatorial Optimization Problems Using a New Algorithm

Based on Gravitational Attraction. Ph.D., thesis, Melbourne, Florida Institute of Technology, 1-

250.

[21] Ranatunga, V., Hosokawa, A., Kinoshita, K., Yamai, N., & Murakami, K. (2007, January). A Fair

and Effective Scheduling Algorithm for Multi-Agent Systems. 2nd International Conference on

Communication Systems Software and Middleware, COMSWARE 2007, 1-8.

[22] Adhau, S., Mittal, M. L., & Mittal, A. (2013). A multi-agent system for decentralized multi-project

scheduling with resource transfers. International journal of production economics, 146(2), 646-

661.

[23] Hsieh, F. S., & Lin, J. B. (2013, May). A simulation environment for scheduling workflows in

multi-agent systems. International Conference on Advanced Robotics and Intelligent Systems

(ARIS), 116-121.

[24] Zhenqiang, B., Weiye, W., Peng, W., & Pan, Q. (2012). Research on production scheduling system

with bottleneck based on multi-agent. Physics Procedia, 24, 1903-1909.

[25] Li, Q. S., & Du, L. M. (2009, July). Model design of job shop scheduling based on Multi-agent

system. International Conference on Services Science, Management and Engineering, SSME'09.

IITA, 233-236.

[26] Yumin, D., & Shufen, X. (2007, July). Hybrid Application On Job-Shop Scheduling by Genetic

Algorithm and MAS Spring-Net. Eighth ACIS International Conference on Software Engineering,

Artificial Intelligence, Networking, and Parallel/Distributed Computing, SNPD 2007, 2, 579-584.

[27] Wang, Z., & Liu, Y. (2006, October). A multi-agent agile scheduling system for job-shop problem.

Sixth International Conference on Intelligent Systems Design and Applications, ISDA'06, 2, 679-

683.

[28] Li, Q., & Du, L. (2009, October). Research on hybrid-genetic algorithm for mas based job-shop

dynamic scheduling. Second International Conference on Intelligent Computation Technology and

Automation, ICICTA'09, 1, 404-407.

[29] Nie, L., Bai, Y., Wang, X., Liu, K., & Cai, C. (2012, May). An agent-based dynamic scheduling

approach for flexible manufacturing systems. 16th International Conference on Computer

Supported Cooperative Work in Design (CSCWD), 59-63.

[30] Shah, S. N. M., Haron, N., Zakaria, M. N. B., & Mahmood, A. K. B. (2012). Agent-based Robust

Grid Scheduling Framework for High Performance Computing. AASRI Procedia, 1, 554-560.

[31] Shah, S. N. M., Zakaria, M. N. B., Haron, N., Mahmood, A. K. B., & Naono, K. (2012). Design

and evaluation of agent based prioritized dynamic round robin scheduling algorithm on

computational grids. AASRI Procedia, 1, 531-543.

[32] Zunino, A., & Campo, M. (2009). Chronos: A multi-agent system for distributed automatic meeting

scheduling. Expert Systems with Applications, 36(3), 7011-7018.

[33] Barenji, A. V., Barenji, R. V., & Hashemipour, M. (2016). Flexible testing platform for

employment of RFID-enabled multi-agent system on flexible assembly line. Advances in

Engineering Software, 91, 1-11.

Int J Appl Optim Stud (IJAOS), Vol. 1 No. 1 Pages 11-24

[34] Ma, Q., & Miao, G. (2015). Output consensus for heterogeneous multi-agent systems with linear

dynamics. Applied mathematics and computation, 271, 548-555.

[35] Saboori, I., & Khorasani, K. (2015). Actuator fault accommodation strategy for a team of multi-

agent systems subject to switching topology. Automatica, 62, 200-207.

[36] Huang, N., Duan, Z., & Chen, G. R. (2016). Some necessary and sufficient conditions for

consensus of second-order multi-agent systems with sampled position data. Automatica, 63, 148-

155.

[37] Sun, Y., Wang, Y., & Zhao, D. (2015). Flocking of multi-agent systems with multiplicative and

independent measurement noises. Physica A: Statistical Mechanics and its Applications, 440, 81-

89.

[38] Voudouris, C., & Tsang, E. P. (2003). Guided local search. In Handbook of metaheuristics (pp.

185-218). Springer, Boston, MA.

[39] Hosseinabadi, A. A., Kardgar, M., Shojafar, M., Shamshirband, S., & Abraham, A. (2014,

November). GELS-GA: hybrid metaheuristic algorithm for solving multiple travelling salesman

problem. 14th International Conference on Intelligent Systems Design and Applications (ISDA),

76-81.

[40] Rostami, A. S., Mohanna, F., Keshavarz, H., & Hosseinabadi, A. A. R. (2015). Solving multiple

traveling salesman problem using the gravitational emulation local search algorithm. Applied

Mathematics, 9(2), 1-11.

[41] Farahabadi, A. B., & Hosseinabadi, A. R. (2013). Present a new hybrid algorithm scheduling

flexible manufacturing system consideration cost maintenance. International Journal of

Scientific & Engineering Research, 4(9), 1870-1875.

[42] Hosseinabadi, A. A. R., Farahabadi, A. B., Rostami, M. H. S., & Lateran, A. F. (2013). Presentation

of a new and beneficial method through problem solving timing of open shop by random

algorithm gravitational emulation local search. International Journal of Computer Science Issues

(IJCSI), 10(1), 745.

[43] Hosseinabadi, A. A. R., Siar, H., Shamshirband, S., Shojafar, M., & Nasir, M. H. N. M. (2015).

Using the gravitational emulation local search algorithm to solve the multi-objective flexible

dynamic job shop scheduling problem in Small and Medium Enterprises. Annals of Operations

Research, 229(1), 451-474.

[44] Hosseinabadi, A. A. R., Rostami, N. S. H., Kardgar, M., Mirkamali, S., & Abraham, A. (2017). A

new efficient approach for solving the capacitated vehicle routing problem using the gravitational

emulation local search algorithm. Applied Mathematical Modelling, 49, 663-679.

[45] Meng, A., Ye, L., Roy, D., & Padilla, P. (2007). Genetic algorithm based multi-agent system

applied to test generation. Computers & Education, 49(4), 1205-1223.

[46] Tirkolaee, E. B., Goli, A., Bakhsi, M., & Mahdavi, I. (2017). A robust multi-trip vehicle routing

problem of perishable products with intermediate depots and time windows. Numerical Algebra,

Control & Optimization, 7(4), 417-433.

[47] Tirkolaee, E. B., Alinaghian, M., Hosseinabadi, A. A. R., Sasi, M. B., & Sangaiah, A. K. (2018).

An improved ant colony optimization for the multi-trip Capacitated Arc Routing Problem.

Computers & Electrical Engineering.

Int J Appl Optim Stud (IJAOS), Vol. 1 No. 1 Pages 11-24

[48] Mirmohammadi, S. H., Babaee Tirkolaee, E., Goli, A., & Dehnavi-Arani, S. (2017). The periodic

green vehicle routing problem with considering of time-dependent urban traffic and time windows.

Iran University of Science & Technology, 7(1), 143-156.

