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Abstract 

Challenges in shortages and wastages of blood products in hospitals are the most 

important issues in the blood supply chain. Due to the perishability of blood products, 

hospitals have difficulties to determine an adequate number of blood units which led 

to wastages as a result of excessive orders or shortage as result of an inadequate 

number of blood units. Both situations lead to irreparable results since blood is a 

limited invaluable source that has to do with health-related activities. In this paper, 

we develop Multi-Choice Goal Programming (MCGP) for an integer programming 

model to minimize total transportation, wastage, inventory, and shortage costs, and 

the difference of hospitals demand from Blood Transfusion Center (BTC) and 

ordered amount of BTC of m hospitals. We focus on Red Blood Cells (RBCs) of the 

whole blood components. Next, a case study of real-life data of eleven hospitals in 

Zanjan province of Iran (ZPI), has been evaluated with the model in three demand 

scenarios for considering uncertainty.  
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1. Introduction 

Considering the large population of the world, demand for blood is immense since blood 

transfusion is necessary for many patients with different kinds of diseases and surgeries such 

as cancer, organ transplant, trauma victims and etc. Besides, blood is not an ordinary product, 

being an alive tissue of great concern in the medical treatment for humankind with no other 

alternative generation source until now which makes it a scarce resource. Carrying oxygen, 

nutrients and many chemicals to all over the body and taking the wastes out are of main tasks 

that blood does. Each unit of collected blood consists of several components, mainly of Red 

Blood Cells (RBCs), white blood cells (WBCs), serum, plasma and platelets which can be 

extracted from the blood through a series of procedures. Each individual of these components 

does specific tasks. Hemoglobin is the protein inside RBCs that carries oxygen. RBCs remove

 carbon dioxide from the body, transporting it to the lungs to exhale. White blood cells are part 

of the immune system and defend the body against infectious agents. The serum is a blood 
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plasma neither of clotting factor, white and red blood cells. Platelets in plasma are the clotting 

factors which play a crucial role in coagulation that recover the body when impairs and 

bleeding occurs. All blood components are perishable except plasma. Perishability of blood 

components varies from less than a week for platelets and up to forty-two for RBCs. Blood 

Supply Chain Management (BSCM) is very important and critical as it deals with human lives 

which are drawn from volunteer donors. As shown in Figure 1, BSCM in Iran begins with the 

collection of blood from donors in four collection sites consisting of Blood Collection Center 

(BCC), Blood Collection Processing Centers (BCPCs), Mobile Teams (MTs) and Blood 

Transfusion Center (BTC) which we demonstrate them by two samples. Then it goes under the 

test of containing diseases as HIV, Hepatitis and etc. that cannot be transfused to patients. Next, 

it can be stored or separated into several components after taking a series of tests like typing 

and screening tests. Then it is transformed into hospitals as an inventory location that tries to 

satisfy the blood transfusion demand of patients. For each operation, the first process includes 

a recipient’s blood test for the donor’s blood. This process is called cross-matching. Then the 

required number of blood units is taken from blood inventory of hospital and after the 

operation, the unused units are taken back to inventory. The time that passes between patient’s 

operation and the return of the unused blood units to the inventory is called a cross-match 

release period. 

 Blood transfusion occupies a vital position within the medical care system and efficient 

management of blood supplies is of great economic and social importance to both hospitals 

and patients (Malmir et al, 2016). Hence, its supply chain is disparate from other commodities. 

Gunpinar and Centeno (2015) cited four major differences considering all aspects. First, there 

is a monetary relationship with most of the products as the supply of blood is volunteer-based. 

Second, the structure of the BSCM by the living beings is mechanically separated into 

components. However, in the traditional supply chain, parts are manufactured and then 

assembled to create a finished product. Third, the price associated with the acquisition of the 

blood is always linear, that is, no economies of scale are present. Fourth, with receiving a blood 

request in hospital, the cross-matched blood is moved from unassigned inventory (free 

inventory) to assigned inventory (reserved inventory). Then, it is kept there until the time that 

blood is transfused. Blood returns to unassigned inventory if it is not transfused or cross-match 

release period is over. This happens as physicians overestimate the amount of needed blood to 

be uncertain.  

Based on the patient, organizational policy and procedures, the cross-match-to-transfusion ratio 

(C/T ratio) will be different (Basnet et al., 2009). Considering perishable features of blood, a 

hospital puts effort on minimizing shortage and wastage of blood. Because of its crucial 

position in treatment, avoiding to save an excessive number of blood units is not possible as 

the inadequate number of blood units which may lead to an increment in fatality rates (see 

Fontaine et al. (2009) and Nagurney et al. (2012)). Gunpinar and Centeno (2015) considered 

only one hospital in their work; however, considering the real-life circumstances and a large 

number of patients with blood request; in order to address the problem with real-life conditions, 

we consider more than one hospital in our study.  
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In this paper, we present mixed integer programming (MIP) model to minimize shortage, 

wastage levels and total cost pertained to several procedures at m hospitals. The rest of the 

paper is structured as follows. In Section 2, we review the related literature. Section 3 discusses 

the model formulation is presented. The case study’s computational results are reported in 

Section 4 which is conducted in Zanjan province of Iran (ZPI). Finally, Section 5 describes 

useful managerial insight tips and the conclusion of the research is given in Section 6.    

 

 
Fig. 1. General Processes involved in the blood supply chain network of Iran. 

 

2. Literature review 

BSCM has arisen to be an important area of supply chain management in healthcare problems 

(Jahantigh and Malmir, 2015). Two of the most well-known and detailed surveys about BSCM 

are given in Pierskalla (2005), and Beliën and Forcé (2012). We review the first studies on 

cross-matching policies in BSC. In Rabinowitz (1973), a computer model of a complete blood 

bank inventory system was constructed in order to determine the effects of three inventory 

policies on blood wastage and on workload while using inventory level to control shortages. 

The three policies were double cross-matching, use of older blood for patients more likely to 

use blood reserved for them, and use of older Rh-negative blood for compatible Rh-positive 

patients under limited conditions. Cohen and Pierskalla (1979) worked on inventory level for 

a hospital blood bank with considering daily demand level, the transfusion to cross-match ratio, 

the cross-match release period and the age of arriving units that determine the shortage and 

outdated rate. Cohen and Pierskalla (1975) considered management strategies for the 

administration of a regional blood bank. The techniques of management science and 

mathematical inventory theory were applied to construct a model for the system, to identify 

policy areas, and to formulate management objectives. Two simulation models and data 

collected from both a regional and single hospital blood bank are used in the analysis. The 

results presented to examine the interactions and savings associated with following optimal 

ordering, cross-match, and issuing policies. Jagannathan and Sen (1991), developed a model 

for determining outdates and shortages for cross-matched blood using generally accepted 

parameters, such as the proportion of cross-matched blood that is actually transfused, and the 

number of days after which cross-matched blood is released if not transfused. Georgsen and 

Kristensen (1998) work was about the country of Funen (in Denmark) transfusion service and 
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aims were to standardize and improve the quality of blood components, laboratory procedures, 

and the transfusion service and to reduce the number of outdated blood units. Part of the 

efficiency gains was reinvested in a dedicated computer system making it possible – among 

other things – to change the cross-match procedures from serological to computer cross-

matching according to the ABCD-concept. 

Rytilä and Spens (2006) applied a discrete event simulation modeling in the health‐ care sector, 

more specifically in the area of blood transfusion services. The model has been refined in 

cooperation with medical expertise as it is vital that practitioners are closely involved so that 

the model can be tested against their understanding as it develops. The aim of their model is to 

improve BSCM in order to use the scarce resource of blood more efficiently. Katsaliaki (2008) 

did a study with the use of primary and secondary data from the National Blood Service and 

the supplied hospitals, and a statistical analysis was conducted and a detailed discrete event 

simulation model of a vertical part of the UK BSCM products was developed to test and 

identify good ordering, inventory and distribution practices. Delen et al. (2011) introduced a 

novel application of operations research, data mining and geographic information-systems-

based analytics to support decision making in BSCM. Osorio et al. (2017) presented an 

integrated simulation-optimization model to support both strategic and operational decisions 

in production planning. Discrete-event simulation is used to represent the flows through the 

supply chain, incorporating collection, production, storing and distribution.  

Cetin and Sarul (2009) used a hybrid model of discrete location approaches and center of 

gravity method of continuous location models, for the location of blood banks among hospitals 

or clinics, rather than blood bank layout in health care institutions. It is initially unknown the 

number of blood banks will be located within capacity, their geographical locations, and their 

coverage area. Jabbarzadeh et al. (2014) proposed a robust network design model for the supply 

of blood during and after disasters. A practical optimization model is developed that can assist 

in blood facility location and allocation decisions for multiple post-disaster periods. Zahiri et 

al. (2015) presented a MIP model to make strategic as well as tactical decisions in a blood 

collection system over a multi-period planning horizon. A robust possibilistic programming 

approach is applied to cope with the inherent epistemic uncertainty of the model’s parameters. 

The applicability of the proposed model is demonstrated using a real case study in Mazandaran. 

To best of our knowledge, most similar to our work is by Gunpinar and Centeno (2015) that 

presented MIP models to minimize the total cost, shortage and wastage levels of blood products 

at a hospital within a planning horizon. Then they included uncertainty in demand rates with 

deterministic and stochastic models for two types of patients and cross-match-to-transfusion 

ratio. Chaiwuttisak et al. (2016) proposed a binary integer programming model for allocation 

of low-allocation locations based on objectives of improving the BSCN products while 

reducing costs of transportation. They evaluated their model with real-life data of 1999-2009 

of national blood center of Thai Red Cross society.  Fereiduni and Shahanaghi (2016) used a 

multi-period model for BSCM in an emergency situation to optimize the decisions related to 

locate blood facilities and distribute blood products after natural disasters. Considering 

uncertainty in disastrous situations, a robust network to capture the uncertain nature of the 

blood supply chain during and after disasters is proposed. Hosseini-Motlagh et al. (2016) 

proposed a fuzzy-stochastic mixed integer linear programming model to design a BSCN for 
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disaster relief. To deal with uncertainty in the model parameters, a fuzzy programming 

approach is considered, and the combination of the expected value and the chance-constrained 

programming is applied to solve the proposed model. A case study with real-life data of Tehran 

is used as an application of the model. 

 Ensafian et al. (2017) developed a stochastic multi-period mixed-integer model for the 

collection, production, storage, and distribution of platelet in Blood Transfusion Organizations 

ranging from blood collection centers to clinical points. Salehi et al. (2017) proposed a new 

robust two-stage multi-period stochastic model for the blood supply network design with the 

consideration of a possible natural disaster. The demand for blood units from different types 

and their derivatives including plasma and platelets are uncertain variables. They consider the 

possibility of transfusion of one blood type as well as its derivatives to other types based on 

the medical requirements is considered in the optimization model. A case study related to a 

likely earthquake in Tehran.  

Hosseinifard and Abbasi (2018) studied the significance of inventory centralization at the 

second echelon of a two-echelon supply chain with perishable items. The replenishment at the 

first echelon is considered to be stochastic. The second echelon contains hospitals receiving 

external demands (transfusions). Kaveh and Ghobadi (2017) proposed an efficient method for 

allocating a number of blood centers to a set of hospitals to minimize the total distance between 

the hospitals and the blood centers, based on the concept of graph partitioning (p-median 

methodology) and metaheuristic optimization algorithms namely colliding bodies optimization 

(CBO).  Fahimnia et al. (2017) proposed a stochastic bi-objective supply chain network design 

model for blood supply in disasters. They used ε-constraint and Lagrangian relaxation methods 

to solve the bi-objective model. Zahiri and Pishvaee (2017) developed a bi-objective 

mathematical programming model to minimize the total supply chain costs and maximize 

unsatisfied demand. They investigated the proposed model in a case study for northern Iran. 

Fazli-Khalaf et al. (2017) presented a tri-objective model for five echelons blood supply chain 

including donors, blood collection facilities, laboratories, BCs and hospitals in emergency 

situations such as earthquake and tsunami. Their model contribution was to minimize costs in 

blood supply chain and transportation times while maximizing total testing reliability of the 

donated blood in the laboratories. They proposed two robust possibilistic flexible chance 

constraint programming and possibilistic flexible chance constraint programming model to 

consider uncertainty in their model. The model was investigated for Tehran. Khalilpourazari 

and Khamesh (2017) proposed multi-objective mixed integer linear programming model, 

multi-objective decision-making methods and lexicographic weighted Tchebycheff method to 

design efficient blood supply chain network during earthquakes with respect to the magnitude 

of the earthquake. They investigated their model with a case study on Tehran, Iran.  

Rabbani et al. (2017) proposed multi-objective optimization models to investigate mobile 

blood collection system for platelets production. Maximizing the potential amount of blood 

collection and minimizing costs are considered in first objective function under fuzzy set. The 

second objective function is a vehicle routing problem with time windows that investigates the 

shuttles routing problem. Simulated annealing algorithm is used as a solution methodology to 

solve the model. 
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Table 1. The brief literature review. 

References Model 
Uncertainty Time period 

Objective 

function 

Solution 

techniques 
Research scopes 

Performance 

measure 
Demand points 

Shortage 

costs 
Blood products C/T Case study 

D FS SP RO Single Multi single multi E S H BSCN Dis Co Sh wa ho Single Multi Di NDi Single Multi   

(Rytilä and 

Spens, 2006) 

- 
- - - - - -  - -  -  - -  - -  - -   - - Canadian 

(Van Dijk et 

al., 2009) 
MDP1  - - - -  - - -  - -  -    - - -   - - 

Dutch blood 

bank 

(Grant , 

2010) 
- - - - - - -  - - - -  - - - - -  - - -  - - - 

(Cetin and 

Sarul ,2009) 
GNLP  - - -  -  -  - - -  - - - - -  -   - - - 

(Zhou et al., 

2011) 
SDP2 - -  - -   -   - -  -     - - -  - - - 

(Seifried et 

al. 2011) 
- - - - - - - - - - - -  - - - - - - - - - -  - - 

(Sha and 

Huang 2012) 
MINLP  - - - -   - - -  - -  - - -  - - -  - - Beijing 

(Stanger et al. 

2012) 
- - - - - -  - - - - -  - - -  - - - - - - - - - 

(Blake and 

Hardy, 2013) 
- - - - - - -  - -  - - -  - - - -  - -  - - Canada 

(B. Zahiri et 

al., 2015) 
MIP - -  - -   -  - - - -  - - - - - - -  - - Mazandaran 

(Jabbarzadeh, 

et al., 2014) 
MIP - - -  -   -  - - - -  - - - -  - -  - - Tehran 

(Osorio et al., 

2016) 
MIP  - - - -   - -  - -   - - -  - - -  - - Colombia 

(Gunpinar 

and Centeno, 

2015) 

MIP - -  - -   -  - - -  -     - -   -  Unclear 

(Zahiri and 

Pishvaee, 

2016) 

MIP -   -  - -   - -  - - - - - -  - - -  - Mazandaran 

(Purana7m et 

al., 2017) 
DP3 - -  - -   - - -   - - -   - - - -  - - Unclear 

(Yates et al., 

2017) 
- - - - - - - - - - - - -  - -  -  - - - - - - - 

(Kazemi et 

al., 2017) 
MIP -  - - -   -  - - -  - - -   - - -  - - Mazandaran 

Our work MIP - -  - -  -   - - -  -    -   - -   ZPI 

                                                 
1 Markov Dynamic Programming 
2 Stochastic Dynamic Programming 
3 Dynamic Programming 
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It can be inferred from Table 1 that all the studies performed in the field of blood supply chain 

networks can be categorized by the following research areas: 

 Modeling approaches. Different types of decision variables including continuous, 

binary and integer variables can be used for defining various mathematical models for 

BSCNs. Binary nonlinear goal programming (BNGP) approaches have been used more 

than other approaches for modeling MIP models. 

 Uncertainty approaches. Different approaches like fuzzy set theory (FS), stochastic 

programming (SP) and robust optimization (RO) techniques have been used in literature 

for modeling parameters’ uncertainty.  

 Time periods. Most of the formulations considered for modeling BSCNs are presented 

in form of multi-period models. 

  The number of objective functions. Different mathematical formulation developed in 

literature for modeling BCSNs are presented in the context of single objective and 

multi-objective models. 

 Solution techniques. The methods used for solving various mathematical models can 

be categorized into four different groups including exact methods (E), heuristic 

algorithms (H), meta-heuristics (MH) and simulation techniques(S). 

 Research scopes. Most of the scopes have been considered in literature for designing a 

BSCN were restricted to collecting and distributing blood and blood products. And 

other researchers have been focused on distribution (Dis) or collection (Co) of blood. 

We take into account cross-matching ratio (C/T). 

 Performance measure. The two most general categories of performance measures are 

those considering the number of outdated units and the number of units short of 

demand. So, we divide inventory costs to Wastage (Wa), Shortage (Sh) and holding 

(Ho) costs. 

 Demand points. Most of the formulations considered for modeling BSCNs have single 

demand point. But so far only one paper considers multiple demand points. 

 Shortage costs. None of the previous research divided patient (ND) demand. But it can 

be divided (D). 

 Blood products. In the real world, Hospitals order the package of various products but 

Most of the formulations considered for modeling BSCNs have single blood product. 

Based on Figure 1 and other papers in the literature about blood supply chain management, the 

innovations of this paper can be summarized as: 

 Cross-matching ratio in patient’s blood demand should be considered in order to satisfy 

demand properly.  

 In the blood supply chain, demands are more than once. Papers in literature did not 

consider cross-matching and reducing inventory costs for several hospitals.  

 In reality, hospitals blood demand is more than what BTCs deliver to them. In this 

paper, we tried to reduce the gap between the real demand of hospitals and supplies of 

BTCs by defining the second objective function.   
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 In order to change our bi-objective function to one objective function, we used multi-

choice goal programming that is more flexible to generate different results.  

 We evaluated our model with a real-life case study.  

 

3. Problem description and model formulation  

In regard of Iranian blood supply chain, hospitals in order to satisfy patient’s blood requests, 

ask for blood packages from BTC. Since blood products are free, hospitals usually ask for an 

abundant volume of blood products from BTC which leads to more blood wastages.  

Consequently, both sides’ further policies will strongly influence the amount of blood wastage 

and shortage. Considering this issue, in this paper, we try on reducing cost and minimizing the 

gap between hospitals blood demand and the amount that BTCs delivery to hospitals, which is 

proposed in second objective function in the model. 

Hospitals transfer blood products to their blood bank. Operation rooms and other parts in 

hospitals make their requests from the hospital blood bank; blood bank starts cross-matching 

based on the blood sample. Then as the needed cross-matched is sent to, the cross-matched 

blood cannot be returned to the bank even without being used. However, cross-matched blood 

can be kept for further requests if it would have not sent out of blood bank (see Figure 2).  

 
Fig 2. The supply chain of cross-matched blood 

 

In this paper, we focus on minimizing inventory costs, wastages and shortages of hospital order 

levels. In this paper, the following assumptions are made: 

 The capacity of BTCs is limited. 

 The age of blood units received from BTC is known and varies over time. 

 Lead times of blood supply are zero. 

 The lifetime of blood units is limited including 5 days for platelets. 

 General blood issuing policy for the hospitals is FIFO.   

 If a blood unit expires, a wastage cost is incurred associated with discarding blood 

units. 

 Testing time of blood products in BTC is assumed P days.  

 Hospitals are not allowed to satisfy their blood demand from other hospitals.  

Indices  
i  Hospitals; i=1,…, I 
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j Age of blood product;  j=1,…, J 

t Time periods; t=1,…,T 

s Demand Scenarios; s=1,…, S 

Parameters 

𝜋𝑠 probability of scenario s  

𝑊𝑖 Unit wastage cost of blood at the hospital i 

𝐻𝑖 Unit holding cost of blood at the hospital i 

𝐶𝑎𝑡 Capacity of the BTC in time period t  

M Big M (big number) 

𝐶𝑟𝑝𝑖 Rate of cross-match at the hospital i 

𝐶𝑇𝑖 Average C/T ratio at the hospital 

𝐵𝑖 Unit shortage cost of blood at the hospital i 

𝐶𝑖 Unit transportation cost of blood from BTC to hospital i 

𝐷𝑖
𝑡𝑠 Blood demand of hospital i in time period t for scenario s  

P Number of days for testing in BTC 

𝜃𝑖𝑗
𝑡  Proportion of j days old blood in blood shipment from BTC to hospital i in time period 

t 

Variables 

𝑢𝑖
𝑡𝑠 Amount of blood wastages at the end of time t for scenario s at the hospital i 

𝑥𝑖
𝑡 Amount of blood ordered by hospital i from BTC in time t  

𝑦𝑖𝑗
𝑡  Number of j days old received blood by the hospital i in time t  

𝑣𝑖𝑗
𝑡𝑠 Inventory level of j days old blood at the end of time t for scenario s at the hospital i 

𝑧𝑖𝑗
𝑡𝑠 A binary variable which is equal to 1 if j days old blood used to satisfy the demand 

in time t for scenario s at the hospital i, 0 otherwise 

𝛽𝑖𝑗
𝑡𝑠 Number of j days old blood returned from assigned inventory to unassigned inventory 

at the time t for scenario s at the hospital i  

𝑟𝑖
𝑡𝑠 Amount of blood shortage in time t for scenario s at the hospital i  

Now, the proposed model is as follows: 

minimize 𝑍1 =  ∑ ∑ 𝐶𝑖

𝐼

𝑖=1

𝑇

𝑡=1

𝑥𝑖
𝑡 + ∑ ∑ ∑ ∑ 𝐻𝑖𝑣𝑖𝑗

𝑡𝑠

𝑆

𝑠=1

𝑇

𝑡=1

𝐽

𝑗=𝑝+1

𝐼

𝑖=1

+ ∑ ∑ ∑ 𝑊𝑖𝑢𝑖
𝑡𝑠

𝑆

𝑠=1

+

𝑇

𝑡=1

𝐼

𝑖=1

∑ ∑ ∑ 𝐵𝑖𝑟𝑖
𝑡𝑠

𝑆

𝑠=1

𝐼

𝑖=1

𝑇

𝑡=1

 

(1) 

minimize 𝑍2 =  ∑ ∑ ∑(

𝑆

𝑠=1

𝑇

𝑡=1

𝐼

𝑖=1

𝑑𝑖
𝑡𝑠 − 𝑥𝑖

𝑡) 

(2) 
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subject to 

∑ 𝑥𝑖
𝑡

𝐼

𝑖=1

≤ 𝐶𝑎𝑡           ∀𝑡 ∈ 𝑇, 
(3) 

𝑦𝑖𝑗
𝑡 = 0                     ∀𝑖, 𝑗 = 1, … , 𝑃; ∀𝑡 ∈ 𝑇, (4) 

𝑦𝑖𝑗
𝑡 =  𝑥𝑖

𝑡  𝜃𝑖𝑗
𝑡            ∀𝑖, 𝑗 = 𝑃 + 𝑏, … , 𝐽; ∀𝑡 ∈ 𝑇, (5) 

𝑍𝑖𝑗
𝑡𝑠 ≥  𝑍𝑖(𝑗−1)

𝑡𝑠         ∀𝑖, 𝑗 = 𝑃 + 1, … , 𝐽; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆,  (6) 

𝐷𝑖
𝑡𝑠 = ∑ ((𝑣𝑖(𝑗−1)

(𝑡−1)𝑠𝐽
𝐽=𝑃+1 + 𝑦𝑖𝑗

𝑡 )𝑍𝑖𝑗
𝑡𝑠 − 𝑙𝑖𝑗

𝑡𝑠) + 𝑟𝑖
𝑡𝑠      ∀𝑖 ∈ 𝐼; ∀𝑠 ∈ 𝑆,  (7) 

(𝑍𝑖𝑗
𝑡𝑠 − 𝑍𝑖(𝑗−1)

𝑡𝑠 )(𝑣𝑖(𝑗−1)
(𝑡−1)𝑠 + 𝑦𝑖𝑗

𝑡 ) ≥  𝑙𝑖𝑗
𝑡𝑠       ∀𝑖, 𝑗 = 𝑃 + 1, … , 𝐽; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆,  (8) 

𝑍𝑖𝑝
𝑡𝑠 = 0          ∀𝑖 ∈ 𝐼, 𝑃; 𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆,  (9) 

𝐷𝑖
𝑡𝑠 − ∑ ((𝑣𝑖(𝑗−1)

(𝑡−1)𝑠𝐽
𝐽=𝑃+1 + 𝑦𝑖𝑗

𝑡 ) ≤ 𝑟𝑖
𝑡𝑠          ∀𝑖 ∈ 𝐼; 𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆,  (10) 

𝑣𝑖𝑗
𝑡𝑠 = (1 − 𝑍𝑖𝑗

𝑡𝑠)(𝑣𝑖(𝑗−1)
𝑡𝑠 + 𝑦𝑖𝑗

𝑡 ) + (𝑍𝑖𝑗
𝑡𝑠 − 𝑍𝑖(𝑗−1)

𝑡𝑠 )𝑙𝑖𝑗
𝑡𝑠 + 𝛽𝑖𝑗

𝑡𝑠     

∀𝑖 ∈ 𝐼; ∀𝑗 = 𝑃 + 1, … , 𝐽; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆, 

(11) 

𝑣𝑖𝑗
𝑡𝑠 = 𝛽𝑖𝑗

𝑡𝑠                 ∀𝑖 ∈ 𝐼; ∀𝑗 = 𝐼 + 1, … , 𝐼 + 𝐶𝑟𝑝; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆, (12) 

𝑣𝑖𝑝
𝑡𝑠 = 0              ∀𝑖, 𝑗 = 𝑃; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆, (13) 

𝑣𝑖𝑗
0𝑠 = 0              ∀𝑖 ∈ 𝐼; ∀𝑗 ∈ 𝐽; ∀𝑠 ∈ 𝑆,                (14) 

𝛽𝑖𝑗
𝑡𝑠 = [(𝑣𝑖(𝑗−𝐶𝑟𝑝−1)

(𝑡−𝐶𝑟𝑝−1)𝑠 + 𝑦𝑖(𝑗−𝐶𝑟𝑝)
(𝑡−𝐶𝑟𝑝)

) (𝑍𝑖(𝑗−𝐶𝑟𝑝)
(𝑡−𝐶𝑟𝑝)𝑠 − 𝑙𝑖(𝑗−𝐶𝑟𝑝)

(𝑡−𝐶𝑟𝑝)𝑠) (1 − 𝐶𝑇−1)]      

 ∀𝑖, 𝑗 = 𝑃 + 𝐶𝑟𝑝, … , 𝐼 + 𝐶𝑟𝑝; ∀ 𝑡 = 𝐶𝑟𝑝 + 1, … , 𝑇, 

(15) 

𝛽𝑖𝑗
𝑡𝑠 = 0                  ∀𝑖, 𝑗 = 𝑃 + 𝐶𝑟𝑝, … , 𝐼 + 𝐶𝑟𝑝, 𝑡 = 1, … , 𝐶𝑟𝑝 (16) 

𝛽𝑖𝑗
𝑡𝑠 = 0                  ∀𝑖, 𝑗 = 1, … , 𝑃 + 𝐶𝑟𝑝 − 1; ∀ 𝑡 ∈ 𝑇, (17) 

𝑢𝑖
𝑡𝑠 = ∑ 𝑣𝑖(𝐽+𝑛)

𝑡𝑠

𝐶𝑟𝑝

𝑛=0

        ∀𝑖 ∈ 𝐼;  ∀ 𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆,    

(18) 

𝑥𝑖
𝑡  ∈  𝑍+     ∀𝑖 ∈ 𝐼; ∀ 𝑡 ∈ 𝑇, (19) 

𝑟𝑖
𝑡𝑠 , 𝑢𝑖

𝑡𝑠 ∈  𝑍+     ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆,  (20) 

𝑦𝑖𝑗
𝑡  ∈  𝑍+        ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, (21) 

𝛽𝑖𝑗
𝑡𝑠, 𝑣𝑖𝑗

𝑡𝑠, 𝑙𝑖𝑗
𝑡𝑠  ∈  𝑍+        ∀𝑖 ∈ 𝐼; ∀𝑗 ∈ 𝐽; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆,  (22) 
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𝑍𝑖𝑗
𝑡𝑠  ∈ {0,1}        ∀𝑖 ∈ 𝐼;  ∀𝑗 ∈ 𝐽; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆.  (23) 

 The objective function (1) minimizes total transportation, wastage, inventory and shortage 

costs. The objective function (2) seeks to minimize the difference between hospitals real 

demand from BTC and the amount they order from BTC. Eqn. (3) guarantees that the number 

of blood units ordered is less or at least equal to the blood center (supplier) capacity. Eq. (4) 

claims that blood product with one to P days old will be tested in BTC and will not be delivered 

to hospitals. Eq. (5) determines the ratio of j days old blood to be delivered to hospitals. Eq. 

(6) guarantee FIFO blood issuing policy. Eq. (7) ensures that demand should be fully satisfied 

when blood supply exceeds demand and make a balance between demand and shortage. Eq. 

(8) determine the number of available blood units in inventory with p days old and newly 

received blood units to be transferred to the next day. Eq. (9) P days old blood are not used to 

satisfy demands. Eq. (10) states that total yesterday, new period inventory levels and shortage 

for each hospital are more than demand. Eq. (11) updates the inventory level of the current day 

with considering blood from the day before and unused cross-matched blood. Eq. (12) updates 

inventory level based on orders and assigned blood. Eqn. (13) there is no P days old blood in 

hospitals inventory section. Eq. (14) states that there is no available inventory at the beginning 

of the period. Eq. (15) calculates the amount of assigned blood inventory for cross-match. Eq. 

(16) states that the rate of cross-match in hospital i at the beginning of the period is zero. Eq. 

(17) states that the inventory of young blood with P+Crp days old is zero. Eq. (18) calculates 

wastage at the end of period t. 

 

3.1. Linearization  

Due to the interaction between binary and discrete variables, the optimization problem includes 

nonlinear terms in our model. A linearization technique is focused on the interactions between 

binary and discrete variables and assigns new discrete variables to replace the products of 

interacting variables. Then in the second linearization technique focuses on the floor function 

(𝑥 = [𝑦]) to determine the number of blood units returned to unassigned inventory.  

In our model, Eqs. (7), (8) and (11) are modified to Eqs. (24)-(51). 

𝐷𝑖
𝑡𝑠 =  ∑ (𝛾𝑖𝑗

𝑡𝑠

𝐽

𝑗=𝑃+1

+ 𝛼𝑖𝑗
𝑡𝑠 − 𝑚𝑖𝑗

𝑡𝑠) + 𝑟𝑖
𝑡𝑠          ∀𝑖 ∈ 𝐼; ∀𝑠 ∈ 𝑆, (24) 

𝛾𝑖𝑗
𝑡𝑠 + 𝛼𝑖𝑗

𝑡𝑠 − 𝜇𝑖(𝑗−1)
𝑡𝑠 − 𝜓𝑖𝑗

𝑡𝑠 ≥ 𝑚𝑖𝑗
𝑡𝑠           ∀𝑖 ∈ 𝐼;  ∀𝑗 = 𝑃 + 1, … , 𝐽; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆,  

(25) 

𝑣𝑖𝑗
𝑡𝑠 = 𝑣𝑖(𝑗−1)

(𝑡−1)𝑠 + 𝑦𝑖𝑗
𝑡 − 𝛾𝑖𝑗

𝑡𝑠 − 𝛼𝑖𝑗
𝑡𝑠 + 𝜆𝑖𝑗

𝑡𝑠 − 𝛿𝑖𝑗
𝑡𝑠 + 𝛽𝑖𝑗

𝑡𝑠         

  ∀𝑖 ∈ 𝐼; ∀𝑗 = 𝑃 + 1, … , 𝐽; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆,  
(26) 

𝑍𝑖𝑗
𝑡𝑠𝑣𝑖(𝑗−1)

(𝑡−1)𝑠
= 𝛾𝑖𝑗

𝑡𝑠       ∀𝑖 ∈ 𝐼; ∀𝑗 = 𝑃 + 1, … , 𝐽; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆, (27) 

𝛾𝑖𝑗
𝑡𝑠 ≤ 𝑍𝑖(𝑗−1)

(𝑡−1)𝑠. 𝑀         ∀𝑖 ∈ 𝐼; ∀𝑗 = 𝑃 + 1, … , 𝐽; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆,   (28) 

𝛾𝑖𝑗
𝑡𝑠 ≤ 𝑣𝑖(𝑗−1)

(𝑡−1)𝑠             ∀𝑖 ∈ 𝐼; ∀𝑗 = 𝑃 + 1, … , 𝐽; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆,  (29) 

𝛾𝑖𝑗
𝑡𝑠 ≥ 𝑀. (𝑍𝑖𝑗

𝑡𝑠 − 1) + 𝑣𝑖(𝑗−1)
(𝑡−1)𝑠       ∀𝑖 ∈ 𝐼; ∀𝑗 = 𝑃 + 1, … , 𝐽; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆,  (30) 
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𝛼𝑖𝑗
𝑡𝑠 ≤ 𝑍𝑖𝑗

𝑡𝑠 . 𝑀         ∀𝑖 ∈ 𝐼; ∀𝑗 = 𝑃 + 1, … , 𝐽; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆,  
(31) 

𝑍𝑖𝑗
𝑡𝑠 𝑦𝑖𝑗

𝑡 = 𝛼𝑖𝑗
𝑡𝑠        ∀𝑖 ∈ 𝐼; ∀𝑗 = 𝑃 + 1, … , 𝐽; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆,  

(32) 

𝛼𝑖𝑗
𝑡𝑠 ≤ 𝑦𝑖𝑗

𝑡        ∀𝑖 ∈ 𝐼; ∀𝑗 = 𝑃 + 1, … , 𝐽; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆,  
(33) 

𝛼𝑖𝑗
𝑡𝑠 ≥ 𝑀. (𝑍𝑖𝑗

𝑡𝑠 − 1) + 𝑦𝑖𝑗
𝑡             ∀𝑖 ∈ 𝐼; ∀𝑗 = 𝑃 + 1, … , 𝐽; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆,  

(34) 

𝑍𝑖𝑗
𝑡𝑠 𝑚𝑖𝑗

𝑡𝑠 =  𝜆𝑖𝑗
𝑡𝑠          ∀𝑖 ∈ 𝐼; ∀𝑗 = 𝑃 + 1, … , 𝐽; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆,  

(35) 

𝜆𝑖𝑗
𝑡𝑠 ≤ 𝑍𝑖𝑗

𝑡𝑠. 𝑀            ∀𝑖 ∈ 𝐼; ∀𝑗 = 𝑃 + 1, … , 𝐽; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆,  
(36) 

𝜆𝑖𝑗
𝑡𝑠 ≤ 𝑚𝑖𝑗

𝑡𝑠            ∀𝑖 ∈ 𝐼; ∀𝑗 = 𝑃 + 1, … , 𝐽; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆,  
(37) 

𝜆𝑖𝑗
𝑡𝑠 ≥ 𝑀. (𝑍𝑖𝑗

𝑡𝑠 − 1) + 𝑚𝑖𝑗
𝑡𝑠           ∀𝑖 ∈ 𝐼; ∀𝑗 = 𝑃 + 1, … , 𝐽; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆,  

(38) 

𝑍𝑖(𝑗−1)
𝑡𝑠 𝑚𝑖𝑗

𝑡𝑠 =  𝛿𝑖𝑗
𝑡𝑠             ∀𝑖 ∈ 𝐼; ∀𝑗 = 𝑃 + 1, … , 𝐽; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆,  

(39) 

𝛿𝑖𝑗
𝑡𝑠 ≤ 𝑍𝑖(𝑗−1)

𝑡𝑠 . 𝑀               ∀𝑖 ∈ 𝐼; ∀𝑗 = 𝑃 + 1, … , 𝐽; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆,  
(40) 

𝛿𝑖𝑗
𝑡𝑠 ≤ 𝑚𝑖𝑗

𝑡𝑠                          ∀𝑖 ∈ 𝐼; ∀𝑗 = 𝑃 + 1, … , 𝐽; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆,  
(41) 

𝛿𝑖𝑗
𝑡𝑠 ≥ 𝑀.( 𝑍𝑖𝑗

𝑡𝑠 − 1) + 𝑚𝑖𝑗
𝑡𝑠           ∀𝑖 ∈ 𝐼; ∀𝑗 = 𝑃 + 1, … , 𝐽; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆,  

(42) 

𝑍𝑖(𝑗−1)
𝑡𝑠 𝑦𝑖𝑗

𝑡 = 𝜓𝑖𝑗
𝑡𝑠                  ∀𝑖 ∈ 𝐼; ∀𝑗 = 𝑃 + 1, … , 𝐽; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆,  

(43) 

𝜓𝑖𝑗
𝑡𝑠 ≤  𝑍𝑖(𝑗−1)

𝑡𝑠 . 𝑀               ∀𝑖 ∈ 𝐼; ∀𝑗 = 𝑃 + 1, … , 𝐽; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆,  
(44) 

𝜓𝑖𝑗
𝑡𝑠 ≤ 𝑦𝑖𝑗

𝑡                       ∀𝑖 ∈ 𝐼; ∀𝑗 = 𝑃 + 1, … , 𝐽; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆,  
(45) 

𝜓𝑖𝑗
𝑡𝑠 ≥ 𝑀. ( 𝑍𝑖(𝑗−1)

𝑡𝑠 − 1) + 𝑦𝑖𝑖
𝑡                         ∀𝑖 ∈ 𝐼; ∀𝑗 = 𝑃 + 1, … , 𝐽; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆,  

(46) 

𝑍𝑖(𝑗−1)
𝑡𝑠 𝑣𝑖(𝑗−1)

(𝑡−1)𝑠 = 𝜇𝑖(𝑗−1)
𝑡𝑠                                  ∀𝑖 ∈ 𝐼; ∀𝑗 = 𝑃 + 1, … , 𝐽; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆,  (47) 

𝜇𝑖(𝑗−1)
𝑡𝑠 ≤ 𝑍𝑖(𝑗−1)

𝑡𝑠 . 𝑀                                 ∀𝑖 ∈ 𝐼; ∀𝑗 = 𝑃 + 1, … , 𝐽; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆,  
(48) 

𝜇𝑖(𝑗−1)
𝑡𝑠 ≤ 𝑣𝑖(𝑗−1)

(𝑡−1)𝑠                  ∀𝑖 ∈ 𝐼; ∀𝑗 = 𝑃 + 1, … , 𝐽; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆,  (49) 

𝜇𝑖(𝑗−1)
𝑡𝑠 ≥ 𝑀. (𝑍𝑖(𝑗−1)

𝑡𝑠 − 1) + 𝑣𝑖(𝑗−1)
(𝑡−1)𝑠        ∀𝑖 ∈ 𝐼; ∀𝑗 = 𝑃 + 1, … , 𝐽; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆,     (50) 

𝛾𝑖𝑗
𝑡𝑠, 𝛼𝑖𝑗

𝑡𝑠, 𝑚𝑖𝑗
𝑡𝑠, 𝜇𝑖(𝑗−1)

𝑡𝑠 , 𝜓𝑖𝑗
𝑡𝑠 , 𝜆𝑖𝑗

𝑡𝑠, 𝛿𝑖𝑗
𝑡𝑠 ∈  𝑍+      ∀𝑖 ∈ 𝐼; ∀𝑗 = 𝑃 + 1, … , 𝐽; ∀𝑡 ∈ 𝑇; ∀𝑠 ∈ 𝑆.  

 
(51) 

Eqn. (15) is also modified to Eqns. (52) and (53):  
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𝛽𝑖𝑗
𝑡𝑠 ≥ ((𝛾𝑖(𝑗−𝐶𝑟𝑝−1)

(𝑡−𝐶𝑟𝑝−1)𝑠 − 𝛼𝑖(𝑗−𝐶𝑟𝑝)
(𝑡−𝐶𝑟𝑝)𝑠) − 𝑚𝑖(𝑗−𝐶𝑟𝑝)

(𝑡−𝐶𝑟𝑝)𝑠) . (1 − 𝐶𝑇−1) − 1 + 𝑇𝑂𝐿 

∀𝑖 = 𝑃 + 1 + 𝐶𝑟𝑝 + ⋯ , 𝐼 + 𝐶𝑟𝑝; ∀𝑡 = 𝐶𝑟𝑝 + 1, … , 𝑇, 
(52) 

𝛽𝑖𝑗
𝑡𝑠 ≤ ((𝛾𝑖(𝑗−𝐶𝑟𝑝−1)

(𝑡−𝐶𝑟𝑝−1)𝑠 − 𝛼𝑖(𝑗−𝐶𝑟𝑝)
(𝑡−𝐶𝑟𝑝)𝑠) − 𝑚𝑖(𝑗−𝐶𝑟𝑝)

(𝑡−𝐶𝑟𝑝)𝑠) . (1 − 𝐶𝑇−1) − 1 + 𝑇𝑂𝐿 

∀𝑖 = 𝑃 + 1 + 𝐶𝑟𝑝 + ⋯ , 𝐼 + 𝐶𝑟𝑝; ∀𝑡 = 𝐶𝑟𝑝 + 1, … , 𝑇. 
(53) 

 

3.2. Converting model to a single-objective model 

 

A MCGP approach is used in this section to convert proposed model into a single objective 

one. The main purpose of this technique is to minimize positive deviations of the model’s 

objectives (Bankian-Tabrizi et al., 2012). Single objective version of linearized model is 

presented as follow: 

minimize 𝑍3 = 𝑊1(𝑑1
+) + 𝑎1(𝑒1

+) + 𝑊2(𝑑2
+) + 𝑎2(𝑒2

+) 

subject to 

(54) 

𝑍1 − 𝑑1
+ = 𝑦1, (55) 

𝑍2 − 𝑑2
+ = 𝑦2, (56) 

𝑦1 −  𝑒1
+ = 𝑏1.𝑚𝑖𝑛, (57) 

𝑦2 −  𝑒2
+ = 𝑏2.𝑚𝑖𝑛, (58) 

𝑏1.𝑚𝑖𝑛 ≤ 𝑦1 ≤ 𝑏1.𝑚𝑎𝑥, (59) 

𝑏2.𝑚𝑖𝑛 ≤ 𝑦2 ≤ 𝑏2.𝑚𝑎𝑥, (60) 

Eqns. (3)-(6), (9), (10), (12)-(23)-(47),  

𝑑1
+, 𝑑2

+, 𝑒1
+, 𝑒2

+ ∈ 𝑍+.  (61) 

where Z3 is the summation of Z1 and Z2. 

 

4. Case study 

In this section, we present the data driven from a real case and applied in our computational 

results. The data includes eleven hospitals in ZPI. Table 2 shows more detailed data obtained 

from ZPI. 

Table 2. Blood products frequency and percentage. 

Blood products RBC PLT FFP Cryo washed RBC whole blood 

Frequency 49673 28780 14264 860 121 87 

Percentage 0.53 0.30687 0.152093 0.00917 0.00129018 0.000927654 

 

Here, we present data related to hospitals of ZPI. In Table 2, the frequency and percentage of 

the blood products are stated. Red blood cells (RBC) consist over half of the blood products 
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with high frequency than others. Two other main blood products are platelets and FFP with 

30% and 15%, respectively.  

Table 3 and Figure 3 present the number and percentage of ABOs for hospitals in ZPI. O+ and 

A+ compromise over 60% of blood type in the hospitals' blood bank. It is obvious that A- and 

B- constitute a little proportion of hospitals blood bank.  

 

Table 3. Blood types frequency and percentage. 

ABO A+ A- B+ B- AB+ AB- O+ O- 

Frequency 28260 4000 17453 3168 7032 1031 28686 4155 

Percentage 0.301 0.04 0.186096 0.03 0.075 0.01 0.3059 0.04 

 

Table 4. Blood products demands. 

Hospitals H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 

Frequency 321 2218 6514 1418 3912 25706 2315 4335 654 648 45744 

Percentage 0.003 0.024 0.069 0.015 0.042 0.274 0.025 0.05 0.007 0.007 0.488 

 

In Table 4, we present blood products demand for 11 hospitals in ZPI. The 11th hospital with 

45744 demands compromising almost 49% and the 6th hospital with 25706 demands 

compromising for approximately 28% are with most high demands in this list. Rest of the 

hospitals mostly have demands with percentages under 10% overall.  

In Table 5, the number of blood products in the hospitals' blood bank is represented for 12 

months within 3 subsequent years. Average numbers of blood products in two first years are 

nearly close to each other. For 2014 and 2015 in most months, the number of blood products 

in hospitals is more than 3000; however, for quite a few numbers of months in 2014 and 2015 

and especially 2016, it is less than 3000.  

 

4.1. Numerical results  

Most of the cost parameters that are used in our model are obtained from Nagurney and  

Masoumi (2012), Ghandforoush and  Sen (2010), Haijema et al. (2007), Zhou et al. (2011), 

Gunpinar and Centeno (2015). Demand values of eleven hospitals in ZPI are used for RBC 

which are gathered in 2015 for each month (t=12). Three scenarios are considered for demand 

values. The first scenario includes real demand values (s1), second scenario’s demand values 

are 10 percent lower than real demand values (s2) and third scenario’s demand values are 10 

percent more than real ones (s3). The first scenario happens with the possibility of 0.5, the 

possibility of two others are same.  
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Table 5. Blood products information. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Blood products frequency and percentage. 

The computational results are obtained using CPLEX 12.2.0.1 on a personal laptop with Core 

(TM) i7- 4500U 1.80 Hz and 8 GB RAM.  

For deterministic model W1, W2, 𝛼1, 𝛼2, e1, e2 are chosen to be 2/6, 4/6, 0.3, 0.7, 0.25, 0.75 

respectively. The cross-match ratio (C/T) is 4/3, obtained from Gunpinar and Centeno (2015).  

The followings results are obtained for the deterministic model. The described model was 

solved with real-life data including RBC demand values in eleven hospitals. The outcomes for 

objective function (1), objective function (2) and Objective function (48) are 5.941499E+7, 

62234.186 and 1.984649E+7, respectively. Runtime (seconds) of the model is 10.152.  
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Year 1

Year 2

Year 3

 Number of blood products 

Month 2014 

(Year 1) 

2015  

(Year 2) 

2016 

(Year 3) 

1 3226 3184 2903 

2 3295 3441 2972 

3 3279 3605 2981 

4 3354 3135 2828 

5 3204 3310 2796 

6 3489 3076 2577 

7 3046 2861 - 

8 2728 3237 - 

9 2663 3204 - 

10 3471 3225 - 

11 3436 3276 - 

12 2958 3025 - 

Sum 38149 38579 17057 

Average 3179.1 3214.917 2842.833 

Standard deviation 264.66 183.6493 136.9153 
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Table 6. Cost-related parameters. 

Parameters Values Units 

Purchase cost of RBC 180 $/unit 

Shortage cost  1500 $/unit 

Wastage cost  150 $/unit  

Holding cost  1.25 $/unit per day 

 

Hospital #11, Valiasr hospital, has the most blood demand between the hospitals of 

the province and play important role in satisfying the blood orders by patients in 

ZPI. As it is driven from the model’s results, the values for the number of blood 

units ordered by hospital #11 are 𝑋(11,1) = 128, 𝑋(11,2) = 168,  𝑋(11,3) =

105, 𝑋(11,4) = 132, 𝑋(11,5) = 120 , 𝑋(11,6) = 112, 𝑋(11,7) = 123, 𝑋(11,8) =

167,  𝑋(11,9) = 151, 𝑋(11,10) = 171, 𝑋(11,11) = 133, 𝑋(11,12) = 155.  

The number of blood units shortages for real-life demand values (S1) in this hospital 

are 

𝑟(11,1,1) = 444, 𝑟(11,2,1) = 515, 𝑟(11,3,1) = 594, 𝑟(11,4,1) = 456,

𝑟(11,5,1) = 584, 𝑟(11,6,1) = 475,   𝑟(11,7,1) = 454, 𝑟(11,8,1) = 568,

𝑟(11,9,1) = 536, 𝑟(11,10,1) = 574, 𝑟(11,11,1) = 553, 𝑟(11,12,1) = 594. 

 For scenario S1 and S2, this value slightly increases and decreases.  

Table 7 represents the results for the number of blood units ordered by hospitals in different 

time periods. Hospitals #3, #5, #6, #8 and #11 have more blood ordered from BTCs. A high 

number of orders shows the high blood demand in these hospitals. 

 

Table 7. Number of blood units ordered by hospital i from BTC in time t. 

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 

H1 9 4 18 16 21 17 11 13 10 7 31 9 

H2 7 8 6 5 7 8 9 3 4 5 8 5 

H3 145 135 123 123 0 169 109 157 109 136 170 142 

H4 42 54 58 53 45 40 56 78 54 39 31 58 

H5 143 102 169 131 141 110 102 64 138 118 98 91 

H6 125 152 173 175 162 136 161 128 119 177 144 146 

H7 60 106 86 69 101 105 51 78 68 62 95 90 

H8 98 110 129 112 91 50 69 104 124 59 60 80 

H9 16 24 25 28 33 24 32 26 21 12 19 23 

H10 43 25 41 20 16 38 11 33 28 21 21 8 

H11 128 168 105 132 120 112 123 167 151 171 133 155 

 

4.1. Sensitivity analysis 

To evaluate the effect of parameters on outcomes, a variety of circumstances are considered to 

determine the sensitivity of outcomes. We considered the effect of W1, W2, 𝛼1, 𝛼2, e1, e2 and 

cross-match ratio on the objective function.  

Weights of each objective function play important role in the value of the objective function in 

the MCGP model. Figure 4 shows the results of sensitivity analysis by the changes in the 
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weights, the value of MCGP objective function increases in a certain trend as the weight of 

objective function (1) and the objective function (2) increases and decreases, respectively. 

Weights increases and decreased with the rate of 0.1 each time. The model was run for nine 

times to obtain the new objective function (1) and the objective function (2) values with respect 

to different W1 and W2 values.  

Table 8 shows that weight of objective function (1) (W1) contributes greatly to the total 

objective function of MCGP model rather than the weight of objective function (2). As the W1 

increases each time, the value of objective function increases, too.  

 

Table 8. Numerical results of MCGP model. 

W1 W2 Z3 
GAMS Runtime 

(seconds) 

0.1 0.9 5997510 12.468 

0.2 0.8 11932790 15.201 

0.3 0.7 17868060 15.624 

0.4 0.6 23803340 14.328 

0.5 0.5 29738610 12.580 

0.6 0.4 35673890 13.021 

0.7 0.3 41609160 13.632 

0.8 0.2 47544440 12.201 

0.9 0.1 53479710 11.980 

 

Figure 4 shows the changes in the objective function of MCGP model by under the changes in 

the transportation cost of blood from BTC to hospitals. As the transportation cost of blood from 

BTC to hospitals increases, the objective function value of MCGP model noticeably increases, 

too. For this, we did test our model for five different transportation cost values.  

 

 
Fig. 4. MCGP objective function value sensitivity to transportation cost of blood from BTC to hospital. 

 

5. Managerial insight 

Based on the results and real-life conditions, BTCs and hospitals managers are recommended 

to consider followings in their strategies for blood demand and supply. Considering high blood 

shortage cost and its close relation with patient’s vital conditions, it is strictly suggested that 

hospitals demand slightly more blood than it is needed to satisfy all needing patients. Besides, 
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another reason for this is that the probability of unpredictable blood transfusion demands is 

always high. In comparison to the many benefits of higher orders, the significance of an 

increase in the blood wastages and holding costs is minor. On the other hand, the managers of 

BTCs are recommended to ask donors through several different voluntarily programs to donate 

blood regularly so that BTCs would be able to satisfy all the hospitals’ demands. Managers of 

BTCs are also recommended to approximately satisfy the exact hospitals demand orders. As 

the gap between the hospitals orders and BTCs supply reduces, the transportation costs drop 

noticeably which contribute greatly to a decrease in objective function value. 

 

6. Conclusion  

In this paper, we developed optimization models for blood management in the hospitals to 

manage blood resources more efficiently with minimizing total transportation, wastage, 

inventory, shortage costs and the difference of hospitals demand from BTC and ordered amount 

of BTC. We mainly focused on red blood cells in our model due to their high demand ratio in 

comparison to other blood components. We present, a multi-objective model so we developed 

a multi-choice goal programming to solve our model. Then, we evaluated the model with real-

life red blood cells demand data of eleven hospitals in ZPI. Following this, we analyzed the 

model’s sensitivity to the effect of factors such as cross-match ratio, objective functions 

weights and transportation cost of blood from BTC to hospital. 

The model in this paper can be expanded in a number of ways in future studies. Demand 

uncertainties models such as hose and hybrid models can be applied to the model to address 

the fluctuations in demand. Besides, meta-heuristic algorithms can be used to solve the problem 

as its size become larger. Another consideration would be to expand the model to analyze the 

blood supply chain where BTCs fail to perform or are disrupted during disasters when the 

significance of BTCs performance is great to medicine the patients.  
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