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Abstract 

An efficient Supply Chain Network Design (SCND) can substantially improve the 

performance of an organizational structure. This research explores the designing of a 

supply chain network for agile organizations with several echelons over several 

periods. It is assumed the problem involves multiple customers with high-quantity 

demands. The problem is modeled to integrate decision variables regarding the 

selection of companies to be involved at each echelon and the volumes of production, 

inventory, and transportation for each company with the objective of minimizing total 

operating costs across the entire supply chain. Given that the problem is NP-Hard, 

Tabu Search (TS) is used to solve the developed model. The results are compared 

with the results of the Lagrangian method employed by one of the recent work in the 

literature. This comparison shows that TS algorithm outperforms the Lagrangian 

algorithm in obtaining optimal solutions. 
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1. Introduction 

Companies operating in competitive markets are in constant struggle to overcome challenges 

like how to cope with diverse and shifting customer needs and demands. It is important for 

these companies to be able to quickly design, produce, and distribute products and at the same 

time improve their production performance and operating costs. One way to deal with these 

problems is to adopt an approach known as agile manufacturing. In an agile supply chain, 

product design, production, and distribution are progressively configured to exploit market 

opportunities and maintain flexibility against environmental changes and market uncertainties 

(Pan and Nagi, 2013). 

One of the factors determining the structure, costs, and performance of a supply chain is Supply 

Chain Network Design (SCND). In today’s competitive and dynamic markets, the goal of 

SCND is to provide an efficient structure for re-engineering and value improvement across the 

entire supply chain (Farahani et al., 2014)(Ahmadi, Azadani, 2018). SCND has significant 

long-term impacts on the supply chain performance and is a subject of interest to businesses 

facing increased competition (Pham and Yenradee, 2017)(Najjartabar et al., 2016) . 
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In this paper, a multi-echelon supply chain network is designed for agile manufacturing setting 

using Tabu Search (TS) algorithm. The second section of this paper describes the concepts of 

agile manufacturing and multi-echelon supply chain and reviews the previous works that have 

utilized TS algorithm. The third section presents the problem description and discusses the 

modeling approach. The fourth section explains the steps taken in TS algorithm to solve the 

problem. In the fifth section, an instance of the discussed multi-echelon supply chain problem 

is solved by TS algorithm. And finally, the sixth section presents the results and some 

suggestions for future research. 

 

2. Research background 

In the context of management, the term “agility” refers to an organization’s ability to properly 

respond to unpredictable environmental changes and use these changes to advance its interests 

(Agarwal et al., 2007). Agile manufacturing is a relatively new model developed for 

eliminating the vulnerabilities of lean manufacturing (Adeleye and Yusuf, 2006). Hence, agile 

manufacturing can be seen as a flexible combination of lean manufacturing and operational 

adaptability. This is why agile manufacturers are said to be flexible manufacturers that they 

can deliver high-quality products at relatively low prices and in relatively shorter times (Jain 

and Jain, 2001). In a study done by Hosseini-Motlagh et al. (2016), a robust optimization model 

was presented for designing blood supply chain networks with emergency transmission routes 

between blood centers. Zahedi et al. (2015) proposed the use of fuzzy set theory in the design 

of integrated closed loop supply chain networks. The logistics model proposed by these 

researchers had three forward echelons and three echelons in reverse direction. Varsei and 

Polyakovskiy (2017) investigated a multi-objective integer programming model to design a 

general model for sustainable supply chain networks with economic, environmental and social 

objectives. In a study by Rahmani and Mahoodian (2017), they designed a supply chain model 

for reducing carbon footprint. This model was designed based on the Benders decomposition 

algorithm (e.g. see Makui et al., 2016) with the purpose of dealing with uncertain parameters. 

In a study carried out by Vinodh et al. (2013), they stated that with access to computers, 

organizations need to evolve products more efficiently and respond more quickly to the needs 

of their customers and then designed a model with agile supply chain characteristics based on 

fuzzy logic to accommodate this need. Subulan et al. (2015) employed a mixed integer 

programming to design a multi-objective closed-loop supply chain network capable of 

accounting for several uncertainty and risk factors, including the “variability index”, “downside 

risk” and “conditional value at risk”. Hasani and Khosrojerdi (2016) implemented a nonlinear 

model based on Taguchi algorithm to design a supply chain network. 

Lemmens et al. (2016) argue that since every supply chain needs a stable network, it is 

imperative to consider the key indicators of economic performance and technology and 

interests and values of stakeholder in the design of supply chain models. In a study by Badri et 

al. (2013), they developed a mathematical model for multi-echelon supply chain networks with 

the help of Lagrange relaxation. This model was shown capable of considering tactical and 

strategic decisions in different time frames. Najjartabar et al. (2018) examined the role of third 

parties in the supply chain design in order to improve the understanding of uncertainties 

regarding this matter. They introduced a nonlinear model for optimizing closed-loop supply 
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chains and solved the model by the imperialist competitive algorithm and the particle swarm 

optimization. 

In the present work, TS algorithm is used to design a multi-echelon supply chain for agile 

manufacturing. After designing and validating the model in GAMS, a numerical example of 

the problem is solved by CPLEX, and finally, the solutions are compared with the results of 

the Lagrange method. 

 

3. Problem statement and modeling 

In this study, it is assumed that the supply chain has to meet stochastic demand from several 

customers and backlog is not allowed. The model is designed for multiple time periods (T) and 

there cannot be any violation in the production and transportation capacities of any company 

at any period.  In order to satisfy customers’ demand, it is possible to choose one or more 

companies at each echelon at any period. The order of operations in the supply chain is defined 

by the variable 𝜑, which represents the number of echelons in the supply chain. At each 

echelon, there are several candidate companies for performing operations of that echelon. The 

main goal is to choose a number of companies at each echelon so as to form an optimal supply 

chain network. Depending on the production and transportation capacity and costs, a company 

may be able to perform multiple operations at multiple echelons. The set 𝐸𝛼 is the set of 

factories that can perform operation 𝛼  (𝛼 = 1, 2, … , 𝜑). Also, the virtual echelon 𝜑 + 1 is 

defined to represent the final customer. The set of edges is defined such that there are no edges 

in the set of nodes X and direct edges extend from the set Eα to one or more other groups in 

the set 𝐸𝛼+1 (𝛼 = 1, 2, … , 𝜑). Also, 𝐸𝛼 ≠ 𝛷 for ∀𝛼 ∈ 𝑃, meaning that no echelon can be empty 

of operations. In this model, it is assumed the final product is delivered to the end customer 

through only one output (𝐸𝜑), and that other echelons 𝐸𝛼 (𝛼 = 1, 2, … , 𝜑 − 1) are not allowed 

to give the unfinished products to the customer. The product (output) of the echelon 𝛼 − 1 is 

used as the raw material (input) of the echelon 𝛼.  

The duration of each operation is the time needed for production and transportation. Different 

companies may have different production and transportation capacities in a given time horizon. 

These capacities may also vary with the time period. The model assumes that there exists zero 

inventory at the beginning of the first period. Hence, the output of the first echelon will reach 

the second echelon at the end of the first period, and the second echelon operations can start at 

the beginning of the second period. By the same token, the final product will not be delivered 

to the customer before the beginning of the period 𝑡 = φ + 1. This assumption means that it 

will take exactly a single period for the product to arrive at the next echelon. Since the product 

delivery time at each echelon is always constant (a single period), there is no need to consider 

the transport method and cost-time tradeoff in the transportation system. In this problem, it is 

assumed that there is only one transportation method, which has a limited capacity. 

 

3.1. Model parameters 

The notation and description of parameters used for problem modeling are presented in Table 

1. 

 

Table 1. Parameters used in problem modeling. 
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Parameter Description 

𝑃 The order of the operations (echelons) required to manufacture the product 𝑃 = {1, 2, … , 𝜑} 

𝑁𝛼 The number of eligible companies at the echelon 𝛼 

𝑇 The number of periods in the planning horizon 

𝐹𝑖(𝛼)𝑗(𝛼+1) The fixed cost of a link between the company 𝑖 at the echelon 𝛼 with the company 𝑗 at the 

echelon α + 1 

𝐶𝑖(𝛼)𝑗(𝛼+1) The unit transportation cost from the company 𝑖 at the echelon 𝛼 to the company 𝑗 at the echelon 

α + 1 in the period 𝑡 

𝐻𝑖(𝛼)𝑡
𝑓

 The unit final product inventory cost in the company 𝑖 at the echelon 𝛼 in the period 𝑡 for  

𝐻𝑖(𝛼)𝑡
𝑟  The unit raw material inventory cost in the company 𝑖 at the echelon 𝛼 in the period 𝑡 for  

𝑈𝑖(𝛼)𝑡 The unit production cost for the company 𝑖 at the echelon 𝛼 in the period 𝑡 

Φ𝑖(𝛼)𝑡 Available production capacity in the company 𝑖 at the echelon 𝛼 in the period 𝑡 

Ψ𝑖(𝛼)𝑗(𝛼+1)𝑡 The transportation capacity of the company 𝑖 at the echelon 𝛼 for transport to the company 𝑗 at 

the echelon α + 1 in the period 𝑡 

𝜃𝛼 The number of units of raw material needed from the echelon α + 1 to produce a unit of product 

at the echelon 𝛼 

𝐷𝑗𝑡  Demand of the customer 𝑗 in the period 𝑡 

 

For all parameters, 𝑡 can take an integer value in the acceptable range and not refers to the 

entire time horizon. 

 

3.2. Decision variables 

The decision variables used in problem modeling are listed in Table 2. 

 

Table 2. Decision variables used in problem modeling. 

Parameter Description 

𝑧𝑖(𝛼)𝑡 The amount of product produced in the company 𝑖 at the echelon 𝛼 in the period 𝑡 

x𝑖(𝛼)𝑗(𝛼+1)𝑡 
The amount of product transported from the company 𝑖 at the echelon 𝛼 to the company 𝑗 at the 

echelon α + 1 in the period 𝑡 (if α = φ , then the product is delivered to the end customer 𝑗). 

ℎ𝑖(𝛼)𝑡
𝑓

 The final product inventory in the company 𝑖 at the echelon 𝛼 in the period 𝑡 (𝛼 = 1, 2, … , 𝜑) 

ℎ𝑖(𝛼)𝑡
𝑟  The raw material inventory in the company 𝑖 at the echelon 𝛼 in the period 𝑡 (𝛼 = 1, 2, … , 𝜑) 

𝑊𝑖(𝛼) { 1          If the company 𝑖 at the echelon α participates in the network,
0          Otherwise.                                                                                                  

 

Y𝑖(𝛼)𝑗(𝛼+1)𝑡 {
 1                If there is a link between the company 𝑖 at the echelon 𝛼 and the company 𝑗 

at the echelon α + 1,
0              Otherwise.                                                                                                                              

 

 

3.3. Mathematical model 

The objective function of the model consists of all operating costs, fixed costs, and production-

related costs. Fixed cost is the cost of a link between two companies at two adjacent echelons. 

Production cost comprises the production cost, the transportation cost, and the inventory 

holding cost for raw materials and final products. The proposed problem model is presented as 

follows:
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 𝑀𝑖𝑛 ∑ ∑ ∑ 𝐹𝑖(𝛼)𝑗(𝛼+1)𝑌𝑖(𝛼)𝑗(𝛼+1)

𝑁𝛼+1

𝑗=1

𝑁𝛼

𝑖=1

𝜑−1

𝛼=1

 

+ ∑ ∑ ∑ 𝑈𝑖(𝛼)𝑡𝑍𝑖(𝛼)𝑡

𝑇−𝜑−𝛼

𝑡=𝛼

𝑁𝛼

𝑖=1

𝜑

𝛼=1

 

+ ∑ ∑ ∑ ∑ 𝐶𝑖(𝛼)𝑗(𝛼+1)𝑡

𝑇−𝜑+𝛼

𝑡=𝛼

𝑁𝛼+1

𝑗=1

𝑁𝛼

𝑖=1

𝜑

𝛼=1

𝑋𝑖(𝛼)𝑗(𝛼+1)𝑡 

+ ∑ ∑ ∑ 𝐻𝑖(𝛼)𝑡
𝑓

𝑇−𝜑+𝛼

𝑡=𝛼

𝑁𝛼

𝑖=1

𝜑

𝛼=1

ℎ𝑖(𝛼)𝑡
𝑓

 

+ ∑ ∑ ∑ 𝐻𝑖(𝛼)𝑡
𝑓

ℎ𝑖(𝛼)𝑡
𝑟𝑇−𝜑+𝛼

𝑡=𝛼
𝑁𝛼
𝑖=1

𝜑
𝛼=2                                                                         (1) 

subject to 

𝑌𝑖(𝛼)𝑗(𝛼+1) ≤ 𝑊𝑖(𝛼)        

            𝑖 = 1, … , 𝑁𝛼;  𝑗 = 1, … , 𝑁𝛼+1;  

  𝛼 = 1, … . , 𝜑 − 1                                                                                                          (2)  

𝑌𝑖(𝛼)𝑗(𝛼+1) ≤ 𝑊𝑗(𝛼+1)    

                      𝑖 = 1, … , 𝑁𝛼; 𝑗 = 1, . . .  , 𝑁𝛼+1;  

                     𝛼 = 1, . . . , 𝜑 − 1                                                                                        (3) 

∑ 𝑌𝑖(𝛼)𝑗(𝛼+1) ≥  𝑊𝑖(𝛼)  

𝑁𝛼+1

𝑗=1

 

       𝑖 = 1 , . . . , 𝑁𝛼;  𝛼 = 1 , . . . , 𝜑 − 1                                                                         (4) 

∑ 𝑌𝑖(𝛼)𝑗(𝛼+1) ≥  𝑊𝑗(𝛼+1)

𝑁𝛼

𝑖=1

    

       𝑗 = 1 , . . . , 𝑁𝛼+1 ;  𝛼 = 1 , . . . , 𝜑 − 1                                                                    (5) 

𝑍𝑖(𝛼)𝑡 ≤  Φ𝑖(𝛼)𝑡𝑊𝑖(𝛼)      

       𝑖 = 1 , . . . , 𝑁𝛼;  𝛼 = 1 , . . . , 𝜑;  𝑡

= 𝛼, . . .  , 𝑇 − 𝜑 + 𝛼                                                                            (6) 

𝑋𝑖(𝛼)𝑗(𝛼+1)𝑡 ≤  Ψ𝑖(𝛼)𝑗(𝛼+1)𝑡𝑌𝑖(𝛼)𝑗(𝛼+1)  

      𝑖 = 1, . . .  , 𝑁𝛼;  𝑗 = 1 , . . . , 𝑁𝛼+1 ;  𝛼 = 1 , . . . , 𝜑 − 1;  𝑡

= 𝛼 , . . . , 𝑇 − 𝜑 + 𝛼                                                                             (7) 

  ℎ𝑖(𝛼)𝑡
𝑓

= ℎ𝑖(𝛼)𝑡−1
𝑓

+  𝑍𝑖(𝛼)𝑡 − ∑ 𝑋𝑖(𝛼)𝑗(𝛼+1)𝑡 

𝑁𝛼+1

𝑗=1

 

     𝑖 = 1, . . . , 𝑁𝛼;  𝛼 = 1, . . . , 𝜑;  𝑡

= 𝛼, . . . , 𝑇 − 𝜑 + 𝛼                                                                              (8) 

  ℎ𝑖(𝛼)𝑡
𝑟 = ℎ𝑖(𝛼)𝑡−1

𝑟 − 𝜃𝛼  𝑍𝑖(𝛼)𝑡 + ∑ 𝑋𝑗(𝛼−1)𝑖(𝛼)𝑡−1 

𝑁𝛼−1

𝑗=1
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      𝑖 = 1, . . . , 𝑁𝛼;  𝛼 = 2, . . . , 𝜑; 𝑡

= 𝛼, . . . , 𝑇 − 𝜑 + 𝛼                                                                           (9) 

∑ 𝑋𝑖(𝜑)𝑗(𝜑+1)𝑡 = 𝐷𝑗𝑡     

𝑁𝜑

𝑖=1

 

     𝑗 = 1, . . . , 𝑁𝜑+1;  𝑡 = 𝜑, . . . , 𝑇                                                                              (10) 

ℎ𝑖(𝛼)𝑡−1
𝑓

= 0    

    𝑡 = 𝛼;  𝑖 = 1, . . . , 𝑁𝛼;  𝛼 = 1, . . . , 𝜑                                                                     (11) 

ℎ𝑖(𝛼)𝑡−1
𝑟 = 0   

    𝑡 = 𝛼;  𝑖 = 1, . . . , 𝑁𝛼;  𝛼 = 2, . . . , 𝜑                                                                     (12) 

𝑍𝑖(𝛼)𝑡 ≥ 0   

     𝑖 = 1, . . . , 𝑁𝛼;  𝛼 = 1, . . . , 𝜑;  𝑡 = 𝛼, . . . , 𝑇 − 𝜑 + 𝛼                                        (13) 

𝑋𝑖(𝛼)𝑗(𝛼+1)𝑡 ≥ 0    

    ∀(𝑖, 𝑗) ∈ 𝐴;  𝛼 = 1, . . . , 𝜑;  𝑡 = 𝛼, . . . , 𝑇 − 𝜑 + 𝛼                                              (14) 

ℎ𝑖(𝛼)𝑡
𝑓

= 0 

   𝑖 = 1, . . . , 𝑁𝛼;  𝛼 = 1, . . . , 𝜑;  𝑡 = 𝛼, . . . , 𝑇 − 𝜑 + 𝛼                                           (15) 

ℎ𝑖(𝛼)𝑡
𝑟 = 0 

   𝑖 = 1, . . . , 𝑁𝛼;  𝛼 = 1, . . . , 𝜑;  𝑡 = 𝛼, . . . , 𝑇 − 𝜑 + 𝛼                                           (16) 

𝑌𝑖(𝛼)𝑗(𝛼+1) ∈ {0,1}   ∀(𝑖, 𝑗) ∈ 𝐴                                                                                 (17) 

𝑊𝑖(𝛼) ∈ {0.1}   

    𝑖 = 1, . . . , 𝑁𝛼;  𝛼 = 1, . . . , 𝜑                                                                                    (18) 
 

Eqns. (2) to (5) are formulated to ensure that two companies can be linked only if both of them 

are selected to participate in the network. Also, when the solution does not include any link to 

a certain company, that company will not be part of the solution. Constraint (6) makes sure that 

production happens only in selected companies. Constraint (7) asserts that transportation can 

happen only if the two companies are linked. Constraints (8) and (8) are formulated to ensure 

that the balance equation between final products and raw materials is established. Constraint 

(9) guarantees that the entire amount of raw material needed at each echelon is obtained from 

the previous echelon. Constraint (10) makes sure that the demands of all customers are 

satisfied. Constraints (11) and (12) determine the amount of inventory that should be held by 

the company to satisfy the demand. And finally, Constraints (13) to (18) specify binary 

variables and non-zero variables of the problem. 

 

4. Tabu Search algorithm 

Tabu Search (TS) algorithm is a meta-heuristic method for solving nonlinear and combinatorial 

optimization problems based on an iterative neighborhood search approach (Altiparmak and 

Karaoglan, 2008). This algorithm starts with finding an acceptable solution and proceeds by 

searching the neighborhood of this solution for better solutions until finally reaching the 

optimal or near optimal solution (Silva and Cunha, 2017). 

TS algorithm consists of the following steps: 
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Step 1: TS algorithm starts with an initial solution, which in many cases, is selected at random. 

The algorithm sets the objective function value of this initial solution as the currently best 

value. 

Step 2: The algorithm searches the neighborhood of the selected solution according to the 

introduced neighborhood structure. 

Step 3: The algorithm determines and selects the best neighborhood among the available 

options. 

Step 4: The algorithm checks the tabu list to determine whether it is allowed to move to that 

neighborhood. If this move is prohibited, the algorithm proceeds to step 5 and otherwise it 

proceeds to step 6. 

Step 5: The algorithm checks whether the prohibited move satisfies the criteria called the 

aspiration criteria. If the aspiration criteria are met, the algorithm carries out the move, 

otherwise, it returns to step 3 to select the next best solution. 

Step 6: The algorithm moves from the current solution to the new solution and sets this new 

solution as the current solution. 

Step 7: The algorithm stores the best solution found during the above processes. At first, it 

considers the initial solution as the best solution. But after each move, it compares the new 

solution with the currently best solution and updates it if necessary. 

Step 8: After each move, the algorithm checks the stopping condition and terminate the 

operation if this condition is met; otherwise it proceeds to the next step. 

Step 9: After each move, the algorithm adds the move to the tabu list and updates the list. The 

duration that a move stays in the tabu list and the way the list is updated should be defined from 

the beginning. The customary updating rule is to remove one (or more) of the oldest moves 

whenever a move is added to the list. After updating the tabu list, the algorithm returns to step 

2 and starts searching the neighborhoods around the new solution. As mentioned, TS algorithm 

is an efficient metaheuristic method for solving combinatorial optimization problems. The 

features that make this algorithm attractive are the flexibility and the ability to obtain optimal 

and near-optimal solutions without getting trapped in local optima (Sun, 2006). Figure 1 

illustrates how this algorithm optimizes the value of the objective function (S) in a typical 

optimization problem. 
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Fig. 1. Flowchart of TS algorithm. 

 

The results are categorized into two classes: small and medium problems and large sized 

problems. In Tables 4 and 5, the optimal solutions are compared with the results of the proposed 

formulation and the results of Pan and Nagi (2013). 

 

Table 4. Comparison of computational results for small and medium problems. 

Deviation from the 

optimal solution Optimal 

solution 

(CPLEX 

12.1) 

Lower 

bound of 

the 

solution of 

Pan and 

Nagi 

(2013) 

Upper 

bound of 

the 

solution of 

Pan and 

Nagi 

(2013) 

Solution 

of TS 

Number 

of 

iteration

s 

Number 

of 

customers 

Numbe

r of 

Periods 

Problem 

structur

e 
Pan and 

Nagi 

(2013) 

TS 

algorithm 

0.05 % 0.03% 1517633 1505348 1518451 1518088 500 1 18 2, 5, 3 

0.44 % 0.50% 243583 236338 244652 244801 500 1 3 3, 3, 3, 3 

0.05 % 0.04% 600007 586990 600321 600247 500 1 8 3, 3, 3, 3 

0.51 % 0.53% 770798 754419 774786 774883 500 1 6 
6, 4, 8, 5, 

6 

0.83 % 0.54% 1554292 1527067 1567272 1562685 500 2 7 
13, 5, 6, 

6 
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1.10 % 0.67% 1297202 1273138 1311590 1305893 500 1 10 
6, 4, 5, 8, 

5, 6 

0.65 % 0.55% 1035990 1014444 1042789 1041688 500 2 6 
10, 5, 21, 

5, 4 

0.64 % 0.58% 1516694 1485196 1526419 1525491 500 2 6 
5, 5, 5, 5, 

5, 5 

0.16 % 0.03% 4652696 4597004 4660344 4654092 500 2 11 

3, 3, 3, 3, 

3, 3, 3, 3, 

3, 3 

1.70 % 0.83% 577366 563730 587338 582158 500 1 7 
21, 29, 

20, 10 

 

Table 5. Comparison of computational results for large problems. 

Difference 

between the 

solutions of TS 

and Pan and 

Nagi (2013) 

Lower bound 

of the solution 

of Pan and 

Nagi (2013) 

Upper bound 

of the solution 

of Pan and 

Nagi (2013) 

Solution 

of TS 

Number 

of 

iterations 

Number of 

customers 

Number 

of 

Periods 

Problem 

structure 

0.94% 2744036 2817443 2761872 500 1 20 6, 5, 6, 10, 3, 3 

1.20% 4132184 4236887 4144666 500 2 14 
8, 6, 5, 9, 10, 

3, 4 

1.23% 2706498 2788743 2721948 500 2 10 6, 6, 8, 5, 6, 10 

4.45% 2492277 2568494 2425066 100 5 4 
10, 10, 10, 10, 

10 

4.68% 4082134 4272226 3999808 100 5 4 

20, 20, 20, 20, 

20, 20, 20, 20, 

20 , 20 

 

According to the results presented in Table 4, the optimality gap for small and medium-sized 

problems is about 1%. The Lagrangian method used by Pan and Nagi (2013) produces two 

results, which are the upper and lower bounds of the solution. As shown in Table (4), the 

solutions obtained with TS method are closer to the optimal solutions produced by CPLEX 

than the solutions obtained by Pan and Nagi (2013) using the Lagrangian method. The results 

presented in Table 5 show that the optimality gap for large problems is less than 5%. It can be 

seen that the higher is the number of iterations, the lower is the difference between the solutions 

of TS algorithm and the Lagrangian method employed by Pan and Nagi (2013), indicating that 

the two methods will produce more similar solutions for larger problems. 

 

5. Conclusions and future research directions 

Considering the variety of existing supply chain structures and models and the ways that they 

can be expanded, in this study, a model developed for agile supply chains with several 

customers and high-quantity demand based on specific conditions and assumptions. Given the 

high quantity of demand and production and transportation capacity constraints, in order to 

prevent demand loss, the supply chain network was formed by choosing several companies at 

each echelon. After examining and theoretical analysis of the model, the following results were 

inferred. 
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In the presence of dynamic demand, the agility of the supply chain was dependent upon 

production flexibility. Production, warehousing, and transportation plans of the selected 

companies were integrated into the supply chain network in order to form a virtual 

organization. Given the NP-hardness of the problem, an effective solution approach was 

developed based on TS algorithm to track acceptable solutions with the help of strategic 

oscillation. The proposed model minimizes the cost of the link between the companies at two 

adjacent echelons. After executing the model with the data contained in the research of Pan 

and Nagi (2013), the results showed that TS algorithm used in this study outperforms the 

Lagrangian algorithm used by Pan and Nagi (2013), as it has a higher convergence rate and 

performs especially better for larger problems. 

To expand this work, it is suggested to develop exact solution methods for larger variants of 

the problem. The use of convergence acceleration methods to increase the algorithm’s 

convergence rate for large-scale problems can also be an interesting approach. Also, some of 

the parameters embedded in this model are associated with uncertainties that can be modeled 

through approaches such as fuzzy programming. 
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