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Abstract 
 

This paper aims to optimize two-person zero-sum matrix games with payoff 

represented as (γ,δ)  interval-valued fuzzy numbers instead of the normal fuzzy 

numbers. Using the signed distance ranking, the fuzzy payoffs matrix is converted 

into the corresponding crisp matrix payoffs. Then, a proposed method for solving the 

problem is presented. Finally, an example is given to illustrate the practical aspect 

and efficiency of the method. 
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1. Introduction 

Game theory is a mathematical modeling technique used for decision problems when there are 

two or more decision makers in conflict or cooperation with each other. Each decision maker 

plays the game to outsmart the others. Game theory provides many effective and efficient 

tools and techniques to mathematically formulate and solve many multi person ith strategies 

in tractions among multiple rational DMs (Krishnaveni and Ganesan, 2018).  Game theory is 

widely applied in many fields, such as economic and management, social policy and 

international and national policies (Von Neumann and Morgenstern, 1944). Simple necessary 

and sufficient conditions for the comparison of information structures in zero-sum games 

have been introduced by Peski (2008). The traditional game theory assumes that all data of 

game are known exactly by players. However, there are some games in which players are not 

able to evaluate exactly some data in our realistic situations. In these, the imprecision is due to 

the inaccuracy of the information and vague comprehension of situations by players. For 

these, many researchers have made a contribution and introduced some techniques for finding 

the equilibrium strategies of these games (Berg and Engel, 1998 and Takahashi, 2008). 

In many scientific areas, such as system analysis and operations research, a model has to 

be set up using data which is only approximately known. Fuzzy sets theory, introduced by 

Zadeh (1965) makes this possible. Dubois and Prade (1980) extended the use of algebraic 

operations on real numbers to fuzzy numbers using a fuzzification principle. Bellman and 

Zadeh (1970) introduced the concept of a maximizing decision-making problem.  

Selvakumari and Lavanya (2015) and Thirucheran et al. (2017) accelerated the fuzzy game. 
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Based on the expected value operator and the trust measure of variables under roughness, Xu 

and Yao (2010) discussed a class of two-person zero-sum games payoffs represented as 

rough. Campos (1989) studied the game problem under fuzziness in the goal and payoffs. 

Sakawa and Nishizaki (1994) used max-min principle of game theory to study single and 

multiobjective matrix games with fuzzy goals and payoffs. Bector et al. (2004) showed that a 

two-person zero-sum matrix game with having fuzzy goals and fuzzy payoffs are equivalent 

to a pair of LPPs, each of them is the dual to the other in a fuzzy sense. Vijay et al. (2005) and 

(2007) based on the fuzzy duality; fuzzy relation approach and ranking function for solving 

fuzzy matrix games. Pandey and Kumar (2010) proposed a modified approach based on a new 

order function for solving multi-objective matrix games with vague payoffs. Nan et al. (2010) 

studied a fuzzy matrix game and a Lexicographic methodology for finding the solution for it. 

Sahoo (2017) proposed a solution methodology for solving a fuzzy matrix game based on the 

signed distance method. Li and Hong (2012) proposed an approach for solving constrained 

matrix games with triangular fuzzy numbers payoffs. Sahoo (2015) introduced a new 

technique based on the parametric representation of interval numbers to solve the game 

problem. Bandyopadhyay et al. (2013) studied matrix game with triangular intuitionistic fuzzy 

number payoff. Bandyopadhyay and Nayak (2013) studied symmetric trapezoidal fuzzy 

number matrix game payoffs, where they transformed it into different lengths interval fuzzy 

numbers. Chen and Larboni (2006) defined a matrix game with triangular membership 

function and proved that two-person zero-sum game with fuzzy payoff matrices is equivalent 

to two linear programming problems. Seikh et al. (2013) proposed an alternative approach for 

solving matrix games. Bigdeli et al. (2019) studied fuzzy pay-offs multi-objective security 

games, where they formulated the problem as fuzzy coefficients bi-level programming.  

The remainder of the paper is as follows: Section 2 presents basic concepts and results 

related to (𝛾, 𝛿) interval-valued fuzzy numbers. Section 3, two-person zero-sum game with 

(𝛾, 𝛿) interval-valued fuzzy numbers is formulated. Section 4 introduced a proposed method 

for solving the matrix game. Section 4, a numerical example is given to illustrate the 

efficiency of the solution approach. Finally, some concluding remarks are reported in sSection 

5. 

2. Preliminaries 

In order to discuss our problem conveniently, basic concepts and results related to fuzzy 

numbers, and(γ, δ) interval-valued fuzzy numbers are recalled (Chiang, 2001 and Zadeh, 

1965).  

Definition 1. A fuzzy number 𝐴̃  is a convex normalized fuzzy set on the real line ℝ such that: 

1. 𝜇𝐴̃(𝑥) is piecewise  continuous; 

2. ∃ 𝑥 ∈ ℝ , with𝜇𝐴̃(𝑥) = 1. 

Definition 2. If the membership function of the fuzzy set 𝐴̃ on ℝ is  

                         𝜇𝐴̃(𝑥) =

{
 

 
𝛾 (𝑥−𝑟)

(𝑠−𝑟)
, 𝑟 < 𝑥 ≤ 𝑠,

𝛾 (𝑡−𝑥)

(𝑡−𝑠)
, 𝑠 ≤ 𝑥 < 𝑡,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

          

Where 0 < 𝛾 ≤ 1 then 𝐴̃ is called a level 𝛼 fuzzy number and it is denoted as 𝐴̃ = (𝑟, 𝑠, 𝑡;  𝛾). 

Definition 3.  An interval- valued fuzzy set 𝐴̃ on ℝ is given by 

𝐴̃ ≜ {(𝑥, [𝜇𝐴−(𝑥), 𝜇𝐴+(𝑥) ]): 𝑥 ∈ ℝ}, where 𝜇𝐴−(𝑥), 𝜇𝐴+(𝑥) ∈ [0, 1], and 

𝜇𝐴−(𝑥) ≤  𝜇𝐴+(𝑥); 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ ℝ and is denoted as 𝐴̃ = [𝐴̃−, 𝐴̃+]. Let  
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                           𝜇𝐴̃−(𝑥) =

{
 

 
𝛾 (𝑥−𝑟)

(𝑠−𝑟)
, 𝑟 < 𝑥 ≤ 𝑠,

𝛾 (𝑡−𝑥)

(𝑡−𝑠)
, 𝑠 ≤ 𝑥 < 𝑡,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      

Then 𝐴̃− = (𝑟, 𝑠, 𝑡; 𝛾). 

Let  

                            𝜇𝐴̃+(𝑥) =

{
 

 
𝛿 (𝑥−𝑎)

(𝑠−𝑎)
, 𝑎 < 𝑥 ≤ 𝑠,

𝛿 (𝑏−𝑥)

(𝑏−𝑠)
, 𝑠 ≤ 𝑥 < 𝑐,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

      

Then 𝐴̃+ = (𝑎, 𝑠, 𝑏;  𝛿). 

It is clear that 0 < 𝛾 ≤ 𝛿 ≤ 1, and 𝑎 < 𝑟 < 𝑠 < 𝑡 < 𝑏. Then the interval-valued fuzzy set is 

defined as 

𝐴̃ ≜ {(𝑥, [𝜇𝐴−(𝑥), 𝜇𝐴+(𝑥) ]): 𝑥 ∈ ℝ}, is denoted as  

𝐴̃ = [(𝑟, 𝑠, 𝑡; 𝛾), (a, s, b; δ)] = [𝐴̃−, 𝐴̃+]. 

𝐴̃ is called a level (𝛾, 𝛿) interval- valued fuzzy number 

Let, P̃ = [(𝑟, 𝑠, 𝑡; 𝛾), (a, s, b; δ)] ∈ 𝐹𝐼𝑉𝐹(𝛾, 𝛿), andQ̃ = [(𝑟1, 𝑠1, 𝑡1; 𝛾), (a1, s1, b1; δ)] ∈ 𝐹𝐼𝑉𝐹(𝛾, 𝛿). Then 

the arithmetic operations on P̃, and Q̃ are 

1. 𝑃̃(+)𝑄̃ = [(𝑟 + 𝑟1, 𝑠 + 𝑠1, 𝑡 + 𝑡1; 𝛾), (𝑎 + 𝑎1, 𝑠 + 𝑠1, 𝑏 + 𝑏; 𝛿)], 

2. 𝑘𝑃̃ = {

[(𝑘𝑟, 𝑘𝑠, 𝑘𝑡; 𝛾), (𝑘𝑎, 𝑘𝑠, 𝑘 𝑏; 𝛿)], 𝑘 > 0,
[(𝑘𝑡, 𝑘𝑠, 𝑘𝑟; 𝛾), (𝑘𝑏, 𝑘𝑠, 𝑘 𝑎; 𝛿)], 𝑘 < 0,

[(0,0,0; 𝛾), (0, 0,0 ; 𝛿)], 𝑘 = 0.

 

Where, 𝐹𝐼𝑉𝐹(𝛾, 𝛿) = {[(𝑟, 𝑠, 𝑡; 𝛾), (𝑎, 𝑠, 𝑏;  𝛿)]: 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑎 < 𝑟 < 𝑠 < 𝑡 < 𝑏}, 

0 < 𝛾 ≤ 𝛿 ≤ 1,  be the family of (𝛾, 𝛿) interval- valued fuzzy numbers. 

Definition 4. Let P̃ = [(𝑟, 𝑠, 𝑡; 𝛾), (a, s, b; δ)] ∈ 𝐹𝐼𝑉𝐹(𝛾, 𝛿), 0 < 𝛾 ≤ 𝛿 ≤ 1. The signed 

distance of 𝑃̃ from 0̃ is given as 

𝑑0(P,̃ 0̃) =
1

8
[6s + r + t + 4a + 4b + 3(2s − a − b)

γ

δ
]. 

Remark 1. P̃ = [(𝑎, 𝑎, 𝑎; 𝛾), (a, a, a; δ)], then  𝑑0(P,̃ 0̃) = 2𝑎. 

Definition 5. Let P̃, Q̃ ∈ 𝐹𝐼𝑉𝐹(𝛾, 𝛿), the ranking of level (𝛾, 𝛿) interval- valued fuzzy numbers 

in 𝐹𝐼𝑉𝐹(𝛾, 𝛿) using the distance function 𝑑0 is defined as: 

Q̃ ≺ P̃ ⟺ d0 ( Q̃, 0̃ )< 𝑑0(P̃, 0) 

Q̃ ≈ P̃ ⟺ (Q̃, 0̃ )= 𝑑0(P̃, 0). 

Property 1. Let P̃ = [[(𝑟, 𝑠, 𝑡; 𝛾), (a, s, b; δ)]] and Q̃ = [(𝑟1, 𝑠1, 𝑡1; 𝛾), (a1, s1, b1; δ)] be (𝛾, 𝛿) 

interval- valued fuzzy numbers in𝐹𝐼𝑉𝐹(𝛾, 𝛿). Then 

 𝑑0(𝑃̃ ⊕ 𝑄,̃ 0̃) = 𝑑0(𝑃̃, 0̃) + 𝑑0(𝑄,̃ 0̃), 

 𝑑0(𝑘 𝑃̃, 0̃) = 𝑘 𝑑0(𝑃̃, 0̃), 𝑘 > 0. 

 

3. Problem statement and solution concepts 
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The two-person zero-sum game is the simplest case of game theory in which how much one 

player receives is equal to how much the other loses. Parthasarathy and Raghavan (2010) 

studied the case when both players gave pure, mixed strategies. Nevertheless, the 

noncooperation between players may be vague. 

  There are three types of two-person zero-sum (𝛾, 𝛿) interval-valued fuzzy numbers matrix 

games: 

1.  Two-person zero-sum matrix games with (𝛾, 𝛿) interval-valued fuzzy numbers goals, 

2. Two-person zero-sum matrix games with (𝛾, 𝛿) interval-valued fuzzy numbers payoffs, 

3. Two- person zero- sum matrix games with (𝛾, 𝛿) interval-valued fuzzy numbers goals 

and (𝛾, 𝛿) interval- valued fuzzy numbers payoffs. 

  Let us consider a two player zero sum game in which the entries in the payoff matrix 𝐴̃ are 
(𝛾, 𝛿) interval-valued fuzzy numbers. (𝛾, 𝛿) Interval-valued fuzzy numbers pay-off matrix is 

                                                  Player   II  

                 𝐴̃=Player I   (
𝑎̃11 ⋯ 𝑎̃1𝑛
⋮ ⋱ ⋮
𝑎̃𝑚1 ⋯ 𝑎̃𝑚𝑛

)                                                                            (1)                                                           

Players ,I and II  have n  and m strategies, respectively denoted by 𝑃, and 𝑄, respectively and 

are defined as 

               𝑃 = { 𝑥 ∈ ℝ𝑚: 𝑥𝑖 ≥ 0, ∑ 𝑥𝑖
𝑚
𝑖=1 = 1}, and                                                                 (2) 

       

              𝑄 = { 𝑦 ∈ ℝ𝑛: 𝑦𝑗 ≥ 0,∑ 𝑦𝑗
𝑛
𝑗=1 = 1}.                                                                         (3)        

              

The mathematical expectation for player 𝐼 is 

 

            𝑍̃ = ∑ ∑   𝑥𝑖  𝑎̃𝑖𝑗
𝑚
𝑖=1

𝑛
𝑗=1 𝑦𝑗,                                                                                            (4) 

The mathematical expectation for player 𝐼𝐼  is  

             𝑍̃ = ∑ ∑  𝑥𝑖  𝑎̃𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=1 𝑦𝑗.                                                                                            (5) 

Where, 𝑎̃𝑖𝑗 = [(𝑎𝑖𝑗0, 𝑎𝑖𝑗1, 𝑎𝑖𝑗2;  𝛾), (𝑏𝑖𝑗0, 𝑎𝑖𝑗1, 𝑏𝑖𝑗2;  𝛿)] 

 

Definition 6. (Saddle point): If the min-max value equals to the max-min value then the game 

is called a saddle point (or equilibrium) and the corresponding strategies are said optimum 

strategies. The amount of payoff at an equilibrium point is the game value. 

Remark 1. It is clear that the two mathematical expectations are the same since the sums are 

finite. 

Because of the vagueness of pay-offs  (𝛾, 𝛿) interval- valued fuzzy numbers, it is very difficult for the 

players to choose the optimal strategy. So, we consider how to maximize player's or minimize the 

opponent's fuzzy payoffs. Upon this idea, let us propose the maximum equilibrium strategy as in the 

following definition. 

Definition 7. In one two- person zero- sum game, player I 's mixed strategy 
x  player II 's 

mixed  

    Strategy 
y is considered to be optimal fuzzy strategies if 𝑥𝑇𝐴̃ 𝑦∗ ≤ 𝑥∗𝑇 𝐴 ̃𝑦∗ ≤ 𝑥∗𝑇 𝐴̃ 𝑦 for any mixed    

strategies x and .y  

Remark 2. The optimal fuzzy strategy of player I  is the strategy which maximizes 𝑍̃

irrespective of II 's strategy. Also, the optimal fuzzy strategy of player II  is the strategy which   

minimizes 𝑍̃ irrespective of I ' s strategy.  

According to definition 5, and based on definition of the score value of each fuzzy payoff 𝑎̃𝑖𝑗, 
the fuzzy payoff matrix defined in (1) is reduced to the classical payoff matrix game as 
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                                                  Player   II  

                 𝐴=Player I    (

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑛

)                                                                            (6)                                                           

Let us consider the game with deterministic payoff matrix (5), and the mixed strategies of 

players ,I and II  defined in (2) and (3), respectively. If 𝐹is the optimum value of the game of 

a player II , then the linear programming model for player II becomes 

                   min𝐹 
                Subject to   

                            ∑ 𝑦𝑗
𝑛
𝑗=1 ≤ 𝐹; 𝑦𝑗 ≥ 0, 𝑗 = 1, 2, … , 𝑛.                                                              (7) 

 

Putting 𝑦𝑗
′ =

𝑦𝑗

𝐹
, then problem (7) becomes 

 max
𝑗=1

(∑ 𝑦𝑗
′𝑛

𝑗=1 ) 

      Subject to 

          ∑ 𝑎𝑖𝑗 𝑦𝑗
′𝑛

𝑗=1 ≤ 1; 𝑦𝑗
′ ≥ 0, 𝑗 = 1, 2, … , 𝑛.                                                                         (8) 

                

   Similarly, the linear programming model for player I is as 

                   max𝐺 
                Subject to   

                            ∑ 𝑎𝑖𝑗𝑥𝑖
𝑚
𝑖=1 ≥ 𝐺; 𝑥𝑖 ≥ 0, 𝑖 = 1, 2, … ,𝑚                                                         (9)        

            Putting 𝑥𝑖
′ =

𝑥𝑖

𝐺
, 𝑖 = 1,2, … ,𝑚. Then problem (9) becomes 

                  min
𝑖
(∑ 𝑥𝑖

′𝑚
𝑖=1 ) 

                Subject to   

           ∑ 𝑎𝑖𝑗 
𝑚
𝑖=1 𝑥𝑖

′ ≥ 1, 𝑥𝑖
′ ≥ 0, 𝑖 = 1,2, … ,𝑚                                                                        (10)                                                                                    

 

4. Numerical example 

Consider the two-person zero-sum matrix game with (𝛾, 𝛿) interval-valued fuzzy numbers as 

 

𝐴̃ = (
𝑎̃11   𝑎̃12      𝑎̃13 𝑎̃14
𝑎̃21     𝑎̃22      𝑎̃23 𝑎̃24
𝑎̃31   𝑎̃32   𝑎̃33       𝑎̃34    

) 

 

Where the values of 𝑎̃𝑖𝑗 for 𝑖 = 1, 2, 3; 𝑗 = 1,2,3,4 are: 

𝑎̃11 = [(0.5, 1, 5.5; 0.6), (0.25, 1, 7.75; 0.9)], 𝑎̃12 = [(13, 14, 15; 0.6), (11, 14, 17; 0.9)], 
                            𝑎̃13 = [(2, 3, 4; 0.6), (1, 3, 5; 0.9)], 𝑎̃14 = [(2, 3, 4; 0.6), (1, 3, 13; 0.9)], 

𝑎̃21 = [(10, 11, 12; 0.6), (9, 11, 13; 0.9)], 𝑎̃22 = [(5, 6, 7; 0.6), (3, 6, 9; 0.9)], 
𝑎̃23 = [(3, 5, 7; 0.6), (2, 5, 8; 0.9)], 𝑎̃24 = [(10, 11, 12; 0.6), (9, 11, 13; 0.9)], 

𝑎̃31 = [(1, 1, 1; 0.6), (1, 1, 1; 0.9)], 𝑎̃32 = [(0.5, 1, 1.5; 0.6), (0.25, 1, 1.75; 0.9)], 
𝑎̃33 = [(17, 20, 21; 0.6), (11, 20, 22; 0.9)], 𝑎̃34 = [(1.5, 2,4.5; 0.6), (1, 2, 10; 0.9)] 

 

Referring to the signed distance ranking in Definition 4, the above payoff (𝛾, 𝛿) interval- 

valued fuzzy numbers matrix game can be reduced to the corresponding deterministic payoff 

as: 

𝐴 = (
4       3        6        8
11    12      10     11
1      2       19        6

) 

           

According to problem (8), we have 
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                             max(𝑦1
′ + 𝑦2

′ + 𝑦3
′ + 𝑦4

′)  
           

                            Subject to 

                          

                                      4𝑦1
′ + 3𝑦2

′ + 6𝑦3
′ + 8𝑦4

′ ≤ 1, 
 

                                     11𝑦1
′ + 12 + 10𝑦3

′ + 11𝑦4
′ ≤ 1, 

               

                                     1𝑦1
′ + 2𝑦2

′ + 19𝑦3
′ + 6𝑦4

′ ≤ 1, 
                 

                                     𝑦1
′ , 𝑦2

′ , 𝑦3
′ , 𝑦4

′ . 
  

        The optimal strategy is:  

 
             𝑦1

′ = 0, 𝑦2
′ = 0, 𝑦3

′ = 0.231, 𝑦4
′ = 0.769  

 

         In addition, referring to problem (10), we have 

                                 min(𝑥1
′ + 𝑥2

′ + 𝑥3
′ ) 

      

                                    Subject to  

 

                                      4𝑥1
′ + 11𝑥2

′ + 1𝑥3
′ ≥ 1, 

                           

                                       3𝑥1
′ + 12𝑥2

′ + 2𝑥3
′ ≥ 1, 

 

                                       6𝑥1
′ + 10𝑥2

′ + 19𝑥3
′ ≥ 1, 

     

                                      8𝑥1
′ + 11𝑥2

′ + 6𝑥3
′ ≥ 1, 

 

                                      𝑥1
′ , 𝑥2

′ , 𝑥3
′ ≥ 0 

 

The optimal strategy is: 

 

𝑥1
′ = 0, 𝑥2

′ = 0.923, 𝑥3
′ = 0.077. 

 

 Thus the optimal strategies are 

  

𝑥1
′ = 0, 𝑥2

′ = 0.923, 𝑥3
′ =   0.077      ;   𝑦1

′ = 0, 𝑦2
′ = 0, 𝑦3

′ = 0.231, 𝑦4
′ = 0.769, and the corresponding 

fuzzy optimal game value is  

 

[(2.97661, 4.93517, 7.07138; 0.6), (2.24339,4.93517, 0.79613; 0.9 )]. 
 

5. Concluding Remarks 

In this paper, we have considered a two-person zero-sum matrix games with (𝛾, 𝛿) interval- 

valued fuzzy numbers. Firstly, we have defined the game with (𝛾, 𝛿)  interval-valued fuzzy 

numbers pay-offs and then proposed an equilibrium strategy. Secondly, we proposed a 

solution procedure. Lastly, two numerical examples illustrated our research methods. We 
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have discussed only one kind of game with uncertain payoffs. But of course, there are games 

with uncertain payoffs which will be take in our consideration the future.  
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