
 
 

86 
2023, VOL. 3, NO. 1, PAGES 86-95. 

A Two-Phase Local Search Approach for Optimizing University 

Course Scheduling under Academic Constraints 

Kourosh Mokhtari1,*, Fariba Goodarzian2, Seyydeh Atefeh Mousavi Abandansar3 

1Microelectronics Institute of Sevilla, 41092 Seville, Spain 

2Edinburgh Business School (EBS) and School of Social Sciences, Heriot-Watt University, Riccarton, Currie 

EH14 4AS 

3Department of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Iran  

*E-mail (corresponding author): kuroshmokhtari@yahoo.com 

 

 
 

ABSTRACT 

 

Efficiently scheduling university courses while accommodating a plethora of 

academic constraints poses a substantial challenge for educational institutions. 

This paper addresses the intricacies of course scheduling, acknowledging the 

presence of multiple restrictions, encompassing class and faculty constraints. 

Existing methodologies have proposed solutions to this complex optimization 

problem. In this research, we introduce a novel two-phase local search approach 

designed to tackle the university course scheduling problem.  Our approach 

unfolds in two distinct phases. Initially, we generate a feasible solution to the 

scheduling problem. Subsequently, in the second phase, we enhance the solution's 

quality through the application of refined optimization techniques. We have 

implemented this method across diverse datasets and meticulously scrutinized the 

outcomes. Our empirical results underscore the efficacy of the proposed two-step 

approach in delivering high-quality solutions to the intricate problem of 

university course scheduling. 

 

 

Paper type: Research 

Article 

 

Received 2023-03-04 

Revised 2023-06-02 

Accepted 2023-06-05 

 

Keywords: 

Innovative method; 

Scheduling problem; 

Optimization; 

Academic constraints. 

 

1. Introduction 

Today, scheduling is one of the essential necessities of human life. Generally, a schedule is a plan for 

performing work, specifying the allotted time for each part and the person performing the task. A 

timetable is a structured schedule of events with the times at which they occur. Looking around us, we 

see that many activities require scheduling, the result of which is shown by a timetable. In general, two 

elements must be considered for a timetable: 1) two events do not occur simultaneously in the same 

place, and 2) the sufficiency of the available resources must be considered for all events at any time. In 



 
 

87 
2023, VOL. 3, NO. 1, PAGES 86-95. 

simple terms, the problem must be feasible. Nevertheless, these two elements are general terms, and 

there are often several constraints in actual problems. For instance, some events should occur before 

other events or some events require a minimum time between the first occurrence and the start of the 

second.  

Solving the problem of scheduling university courses is a difficult task because of the magnitude of 

the issue and the different structures and natures of each problem. Various techniques have been 

proposed to evaluate and solve this issue, including methods based on graph coloring and integer 

programming. However, heuristic and metaheuristic approaches have been more emphasized in recent 

decades. For example, Doğan and Yurtsal (2021) solved the problem using a genetic algorithm. They 

proposed a genetic algorithm with a biased selection strategy for decoding chromosomes, improving 

the proportionality of the population. In another study, Lach and Lübbecke (2012) presented an integer 

programming model and used a two-stage approach based on three parameters: time, classroom, and 

course. Lü and Hao (2012) proposed an adaptive tabu search algorithm for solving curriculum-based 

course timetabling problems. They also evaluated four neighborhoods based on three criteria to assess 

the percentage of neighborhood improvement, enhancement strength, and search steps. In the latest 

research, Rezaeipanah et al. (2021) developed a hybrid algorithm for the university course timetabling 

problem based on the genetic algorithm, incorporating some local search approaches. The resu lts 

confirmed the effectiveness and superiority of the proposed algorithm in solving the course timetabling 

problem. 

2. Problem Statement  

A university course schedule is a tool used to organize various events, such as course sessions and 

teacher assignments, within specific time slots and classrooms, while adhering to a set of constraints to 

achieve specific objectives. Carter and Laporte (1998) have conceptualized academic course 

timetabling as a complex allocation problem, involving the assignment of students and teachers to 

lectures, classrooms, and time slots in a manner that eliminates conflicts among these elements.  

In essence, university course timetabling problems can be categorized into two main constraint types: 

hard and soft. In order to generate a high-quality schedule, it is imperative that the problem is inherently 

feasible and that any violations of soft constraints are kept to a minimum. Some examples of hard 

constraints typically addressed in these problems encompass the following: 

1. Ensuring that only one course is assigned to a room at any given time. 

2. Limiting the allocation of a teacher to just one course during a specific time slot.  

3. Verifying that classrooms have sufficient capacity to accommodate the designated group of students. 

4. Distributing lectures across different time slots throughout the day. 

On the other hand, several soft constraints are commonly considered when tackling these problems: 



 
 

88 
2023, VOL. 3, NO. 1, PAGES 86-95. 

1. Distributing intensive courses for both students and teachers evenly throughout the week.  

2. Avoiding scenarios where students have only one lecture on a given day. 

3. Taking into account all tabu (restricted) time slots and pre-allocated periods for teachers, students, 

and classrooms. 

In summary, university course timetabling involves the intricate task of creating schedules that 

adhere to a range of constraints, both rigid and flexible, with the ultimate aim of achieving a high-

quality outcome. 

2.1. Modeling the First Phase of Scheduling University Courses 

The objective of the first phase is to minimize the violation of hard constraints. A workable solution 

can be achieved when there is zero violation of hard constraints. 

(1) 𝑀𝑖𝑛 ∑(𝑠2𝑐𝑑𝑡𝑢 + 𝑠𝑐𝑑𝜏𝑑 + 𝑠𝑙𝑐𝑑𝑡𝑢) + ∑ 𝑓1

𝑥𝑖 ,𝑗𝜖𝑋

(𝑥𝑖,𝑗) 

(2) ∑ ∑ 𝑥𝑐𝑟𝑡

𝜏≤𝑡<𝜏𝑑+1𝑟∈𝑅

− 𝑠1𝑐𝑑𝑡𝑢 = 𝑛𝑚𝑎𝑥
𝑐 𝑢𝑐𝑑 , 𝑐 ∈ 𝐶, 𝑑 ∈ 𝐷, 𝑡 ∈ 𝑇, 𝑥𝑐𝑟𝑡 ∈ {0,1}, 𝑢𝑐𝑑 ∈ {0,1} 

(3) ∑ ∑ 𝑥𝑐𝑟𝑡

𝜏≤𝑡<𝜏𝑑+1𝑟∈𝑅

+ 𝑠2𝑐𝑑𝑡𝑢 = 𝑛𝑚𝑎𝑥
𝑐 𝑢𝑐𝑑 , 𝑐 ∈ 𝐶, 𝑑 ∈ 𝐷, 𝑡 ∈ 𝑇, 𝑥𝑐𝑟𝑡 ∈ {0,1}, 𝑢𝑐𝑑 ∈ {0,1} 

(4) ∑(𝑥𝑐𝑟𝑡1

𝑟∈𝑅

− 𝑥𝑐𝑟𝑡2 + 𝑥𝑐𝑟𝑡3) + 𝑠𝑐𝑑𝑡𝑑 = 1, 𝑐 ∈ 𝐶, 𝑑 ∈ 𝐷, 𝜏𝑑 ≤ 𝑡1 < 𝑡2 < 𝑡3 < 𝜏𝑑 +1  

(5) ∀𝑥𝑖,𝑗, 𝑥𝑖,𝑘 ∈ 𝑋, 𝑥𝑖,𝑗 = 𝑐𝑢 , 𝑥𝑖,𝑘 = 𝑐𝑣 : (∀𝑐𝑟𝑞
, 𝑐𝑢 ∉ 𝑐𝑟𝑞 ∨ 𝑐𝑣 ∉ 𝑐𝑟𝑞 ) ∧ (𝑡𝑐𝑢 ≠ 𝑡𝑐𝑣) 

(6) ∑ ∑ 𝑥𝑐𝑟𝑡

𝑡∈𝑇𝑟∈𝑅

= 𝑛𝑐 , 𝑐 ∈ 𝐶 

(7) 
∀𝑥𝑖,𝑗 ∈ 𝑋, 𝑢𝑖 ,𝑗 = 𝑐𝑘 , 𝑓1(𝑥𝑖,𝑗) = {

𝛼1 . (𝑠𝑡𝑑𝑘 − 𝑐𝑎𝑝𝑗), 𝑠𝑡𝑑𝑘 > 𝑐𝑎𝑝𝑗

0
 

(8) ∀𝑥𝑖,𝑗 ∈ 𝑋, 𝑥𝑖,𝑗 = 𝑐𝑘 : 𝑢𝑎𝑣𝑖 ,𝑘 = 0 

(9) 𝑠2𝑐𝑑𝑡𝑢 ≥ 0, 𝑠𝑐𝑑𝑡𝑢 ≥ 0, 𝑠1𝑐𝑑𝑡𝑢 ≥ 0 

In Equations (1)-(9), C is the set of courses, R is the set of rooms, T is the set of time slots, x i,j is the 

course label allocated to t time and j room, capj is the capacity of rj room, and 𝜏𝑑  is the first time slot in 

the morning. In addition, ucd will be equal to one if c course is allocated to d day; otherwise, it will be 

zero. Moreover, nc shows the number of hours scheduled for each course in a week. In this study, 

Equation (1) shows the objective function of the first phase, which aims to minimize the level of 

violation of hard constraints. Equations (2) and (3) demonstrate the minimum and maximum lecture 

hours per day in accordance with the hard constraints of course scheduling. Equation (4) is related to 

the intensiveness of the events related to a lecture. Moreover, Equation (5) is related to the interference 

of courses due to having one teacher after being placed in a course group and scheduling in a time 

period. In other words, the mentioned Equation must be established in order to prevent the interference 



 
 

89 
2023, VOL. 3, NO. 1, PAGES 86-95. 

of two courses scheduled in a period. Equation (6) leads to scheduling the number of sessions required 

for a course in a timetable. Equation (7) is related to holding courses in accordance with the capacity of 

rooms, and Equation (8) is related to holding courses in accordance with teacher availability.   

2.2. Modeling the Second Phase of University Courses Scheduling 

The objective function of the second phase is expressed based on a definition presented for solution 

quality. In general, solution quality is considered by using the penalties that are defined for each time 

slot and for each course. In this phase, the objective function is to minimize the penalty function.  

(10) 𝑝𝑒𝑛𝐼 = 𝑀𝑖𝑛 ∑ ∑ 𝑝𝑐𝑡

𝑡∈𝑇𝑐∈𝐶

+ ∑ 𝑥𝑐𝑟𝑡

𝑟∈𝑅

 

(11) ∑ 𝑥𝑐𝑟𝑡 ≤ 𝜑𝑞𝑑 , 𝑐 ∈ 𝐶, 𝑞 ∈ 𝑄, 𝑑 ∈ 𝐷, 𝜏𝑑 ≤ 𝑡 < 𝜏𝑑+1 , 𝑥𝑐𝑟𝑡 ∈ {0,1}, 𝜑𝑞𝑑 ∈ {0,1} 

(12) ∑ 𝜑𝑞𝑑

𝑑∈𝐷

≤ 𝑘𝑞 , 𝑞 ∈ 𝑄, 𝜑𝑞𝑑 ∈ {0,1} 

(13) ∑ 𝑥𝑐𝑟𝑡 = 1, ∀𝑐 ∈ 𝐹 

(14) ∑ ∑ ∑ 𝑥𝑐𝜏𝑟

𝜏=𝑡−𝑑𝑖 +1𝑡∈𝑣𝑖𝑟∈𝑅

= 0, ∀𝑐 ∈ 𝐶 

In Equations (10)-(14), several key variables and their meanings are defined: 

• Q represents the number of teachers. 

• F denotes the number of allocated courses. 

• 𝑘𝑞 signifies the maximum number of teaching days for a given teacher. 

• 𝑝𝑐𝑡 quantifies the penalty associated with the level of inconvenience experienced by teacher q 

when teaching course c. 

• In this study, 𝜑𝑞𝑑  equals one if teacher q delivers a lecture on day d; otherwise, it is zero. 

• Additionally, 𝑥𝑐𝑟𝑡equals one if course c is scheduled at time t in room r; otherwise, it is zero.  

Equation (10) outlines the objective function for the second phase, aiming to minimize the penalty 

objective function. Furthermore, Equations (11) and (12) pertain to teachers' working hours over the 

course of a week. Finally, Equations (13) and (14) account for all forbidden time slots and periods that 

have been pre-allocated to teachers, students, and rooms.  

3. Method Description 

The problem of scheduling university courses is solved in two stages, in which local search methods 

are applied. In this study, we use iterated local search methods in both stages.  

 

 



 
 

90 
2023, VOL. 3, NO. 1, PAGES 86-95. 

3.1. Iterated Local Search Method 

Iterated local search stands out as one of the most impactful techniques within the realm of single 

solution methods. This method commences by generating an initial solution, and there are two 

approaches at our disposal for this purpose. The first approach involves creating a random initial 

solution, while the second employs a greedy strategy, intentionally generating an initial solution with a 

worse objective function value. Following the generation of the initial solution, iterated local search is 

then employed to refine and enhance this starting point. In the subsequent phase of each iteration, a 

chaos process is introduced to transform the improved solution into a chaotic solution. Subsequently, a 

local search process is applied to this chaotic solution, potentially replacing the previous solution as the 

reference point under specific conditions. This iterative process continues until a predefined termination 

criterion is met. 

3.2. Proposed Method for Solving the Problem of Scheduling University Courses 

The method proposed for addressing the challenge of scheduling university courses involves two 

distinct stages. In the initial stage, we strive to establish a feasible solution for the problem, and in the 

subsequent stage, we enhance the quality of this solution through appropriate techniques. While both 

stages employ methods based on local search, they diverge in their respective objective functions. To 

elaborate, the objective function in the first stage centers on minimizing violations of hard constraints. 

Consequently, the first stage concludes when there are no hard constraint violations. In contrast, the 

objective function in the second stage focuses on minimizing the breach of soft constraints. In this 

phase, we endeavor to refine the achievable solution obtained in the first stage by applying local search 

methods and defining effective and suitable neighborhoods.  

3.3. Construction of a Workable Solution for the Problem of Scheduling University Courses 

First, our approach introduces a heuristic algorithm to assign classrooms to various courses. 

Subsequently, the algorithm validates the corresponding timetable at each stage, contingent upon the 

successful classroom-to-course allocation by the algorithm. 

In our problem solution, we allocate time slots to courses. Notably, the algorithm responsible for 

assigning classrooms to courses relies on a specialized data structure. This structure aids in determining 

the courses scheduled for a particular period. This data structure, henceforth referred to as the "time-

based structure" throughout the remainder of this paper, is essentially a list assigned to each member of 

the list, designated for a specific time. It encompasses details of the lessons to be conducted during that 

particular time. 

The algorithm initiates its assessment by considering a list of members, each embodying a unique 

time-based structure. As previously mentioned, each member allocates courses and events to a specific 

time slot. During the evaluation of each time-based structure, our algorithm systematically processes 



 
 

91 
2023, VOL. 3, NO. 1, PAGES 86-95. 

courses scheduled for that time slot. It assesses whether the corresponding event for each course is 

designated for the first or second session. Subsequently, the algorithm proceeds to inspect other time 

slots associated with that session. 

If a room has been previously reserved for any of the events within that session, the same room is 

allocated to the current event. However, the room is also added to the tabu list for that specific time slot, 

ensuring it remains unavailable for allocation to any other course. This process is meticulously executed 

for all courses within the same time slot. In the event that no room is present on the tabu list, a room 

not on the list will be allocated to the event, provided there are no room assignments for other events 

within the same session. The algorithm's viability hinges on the availability of a room not present on 

the tabu list for allocation to the event. Failure to locate such a room renders the algorithm unsuccessful. 

Conversely, the algorithm successfully allocates rooms to time slots without violating any hard 

constraints in the problem when suitable rooms are found.  

3.3.1. Initial Solution Generation 

A random approach is used to generate the initial solution. First, a time slot is randomly assigned to an 

event of a course. Afterward, the algorithm related to the room allocated, which was explained before, 

is called. If the algorithm successfully allocates the rooms, the time slot specified will be accepted. 

Otherwise, the time slot will not be accepted, and another time slot will be randomly generated and 

evaluated.  

3.3.2. Local Search 

First, let's delve into the description of neighborhoods employed during the initial phase before delving 

into the local search method based on these neighborhoods. In this stage, we examine two distinct 

neighborhoods designed to solve the university course scheduling problem.  

The first neighborhood is rooted in substitution and encompasses N1 and N2 neighborhoods. In N1, 

we generate new neighborhoods for a given solution by substituting one of the existing time slots with 

another. Here, we carefully select an event responsible for violating the constraints related to 

intensiveness and replace its time slot with another. 

Moving on to N2, we meticulously explore all scenarios that lead to violations of intensiveness-

related constraints, considering each individually. Unlike N1, where the replacement time slot is chosen 

randomly, N2 employs a more strategic approach. Time slots are selected with the specific aim of 

reducing the extent of intensiveness constraint violations. 

Now, let's shift our focus to the N3 neighborhood, which is rooted in exchange. Here, we select two 

events from one or two courses (either one event from one course or two events from two different 

courses) and swap the time slots assigned to them. Subsequently, the local search method, utilizing the 

neighborhood displacement structure, is applied to the current solution. Following this step, a second 

exchange neighborhood is employed on the resultant solution. If the new solution does not surpass the 



 
 

92 
2023, VOL. 3, NO. 1, PAGES 86-95. 

current one in quality, we revert to applying the first exchange neighborhood structure to the current 

solution, with the second exchange neighborhood structure being applied to the newly obtained solution.   

3.3.3. Chaos 

The first event of the courses’ sessions is considered to cause chaos in the solution. Afterward, one of 

the events is selected randomly, and a valid time slot replaces the current time slot. If the first event of 

a course session changes, then the second exchange neighborhood, which was described before, 

considers the second event as an event that violates the intensiveness constraints and attempts to replace 

it with another valid event. Accordingly, all events of that session are recognized to be undoable and 

are tried to be changed by the algorithm.  

3.3.4. Acceptance Benchmark 

Following causing chaos in the current solution, the solution obtained replaces the current solution, and 

the process continues. In the first phase of the proposed algorithm, the cessation condition is to have 

zero violation of hard constraints. Figure 1 shows the first-step algorithm.  

First-step algorithm  

Step 1: Allocate rooms to courses.  

Step 2: Do the following tasks as long as the secession condition is not established. 

Step 2: Apply the iterated local search with the following steps: 

2-1: Generate the sj initial solution.  

2-2: Apply local search with the following steps.  

2-2-1: Apply N3 neighborhood on sj.  

2-2-2: Apply N2 neighborhood on s'j.  

2-2-3: If s'I is better than sj, put si = s'i.  

2-2-3: Otherwise, apply N1 on sj.  

2-2-4: Repeat step 2-2-2.  

Step 3: Cause chaos in sj and put si = s'i. 

Step 4: Assess the solution acceptance benchmark.  

Fig. 1. First-step algorithm. 

3.4. Improvement of the Solution Obtained from the First Stage of University Courses Scheduling 

The neighborhood structures employed in the second stage differ significantly from those in the first 

stage. In the first stage, we utilized event-based neighborhoods, whereas in the second stage, our focus 

shifts to course sessions. Specifically, in this stage, we construct neighborhoods based on time slots and 

rooms. There are two distinct types of room-based neighborhood structures to consider. The first type 

is rooted in N4 room displacement, while the second is centered around N5 room exchange. 

Additionally, we have two types of time slot-based neighborhoods. The first, N6, involves displacing 

two different sessions from two courses, while the second, N7, pertains to transferring time slots 



 
 

93 
2023, VOL. 3, NO. 1, PAGES 86-95. 

associated with one session to other configurations. In this section, we implement a local search-based 

algorithm that sequentially utilizes four distinct neighborhood structures. The illustration of the second-

stage algorithm is shown in Figure 2.  

Second-step algorithm 

Step 1: Consider the sj workable solution.  

Step 2: Do the following tasks as long as the cessation condition is not established:  

Step 2: Apply local search with the following steps.  

2-1: Consider Ni neighborhood (i=4,5,6,7) 

2-2: Find the best solution in Ni neighborhood.  

2-3: If s'I is better than sj, put si = s'i. 

2-4: Otherwise, repeat steps 1-2 to 2-3.  

Step 3: Select the solution with the highest quality among the solutions.  

Fig. 2. Second-step algorithm. 

4. Numerical Results 

The algorithms proposed for both the first and second steps have been implemented using the Matlab 

software. Numerical results were acquired using a computer equipped with the Windows 8.1 operating 

system and 8 GB of memory. This particular software environment was chosen due to its advantageous 

features; the C programming language, renowned for its speed, was utilized, providing the essential 

flexibility required to design and implement the proposed algorithm.  The numerical results generated 

by the algorithm for solving the university course scheduling problem are presented in Table 1.  

Table 1. Numerical results of the proposed algorithm. 

E D C B A 

Execution 

time of the 

first phase 

Number 

of groups 

Number 

of 

teachers 

Number 

of events 
Sample 

4994 5403 5490 5631 
6243 4.15 5 20 120 1 

-20% -14% -12% -10% 

9292 9771 9886 10057 
12730 17.53 9 57 210 2 

-27% -23% -13% -21% 

10561 11232 11560 12212 
15306 47.73 11 57 278 3 

-31% -27% -25% -20% 

13588 15303 15316 15632 
20588 74.18 13 60 384 4 

-34% -26% -26% -25% 

14538 16539 16701 17506 
23833 158.43 15 61 430 5 

-39% -31% -30% -26% 

18438 19435 19766 20518 
26340 178.32 16 62 490 6 

-30% -26% -25% -22% 

A: Value of the objective function of the second phase; B: Value of the objective function after five minutes of running the second-step 

algorithm; C: Value of the objective function after 10 minutes of running the second-step algorithm; D: Value of the objective function after 

15 minutes of running the second-step algorithm; E: Maximum reduction of the objective function after three hours of running the second -

step algorithm. 



 
 

94 
2023, VOL. 3, NO. 1, PAGES 86-95. 

Parameters were determined through a combination of experimental data and trial-and-error 

methods. Given that the algorithm proposed in this study is inherently randomized, it was executed for 

a given example ten times, with the resulting mean data recorded in Table 1. 

According to Figure 3, an increase in time for the algorithm in the second phase will lead to obtaining 

a lower objective function value. A high objective function value is obtained when a five-second time 

slot is considered. Meanwhile, the lowest objective function value is obtained when a 15-second time 

slot is considered. Therefore, it could be concluded that the increase of the allowed time for objective 

function can improve its function and lead to obtaining lower objective function levels.  

 

Fig. 3. Comparison of the value of the objective function in different algorithm implementation modes. 

5. Conclusion 

This study introduces a local search-based algorithm designed to address the complex challenge of 

scheduling university courses. The algorithm effectively tackles the problem through a two-stage 

approach. In the initial stage, we attain a workable solution  through the skillful utilization of 

neighborhood structures. Subsequently, in the second stage, we refine and enhance this initial solution 

using the iterated local search method. 

Notably, the application of iterated local search principles begins in the first stage, where the primary 

objective is to minimize violations of hard constraints. The first stage concludes when there are no hard 

constraint violations, signifying the achievement of a feasible solution. Here, we detail the algorithm's 

process for allocating rooms to courses, followed by an explanation of the local search techniques while 

leveraging the appropriate neighborhood structures of exchange and displacement.  



 
 

95 
2023, VOL. 3, NO. 1, PAGES 86-95. 

The second stage deploys entirely different neighborhood structures compared to the first stage. 

While the initial phase primarily relies on events based solely on time slots, the second stage 

incorporates course sessions and events related to time slots and rooms within its neighborhood 

structures. Here, a utility function gauges the quality of the solution, and in each iteration, the algorithm 

works diligently to further refine the solution. Throughout, it diligently considers hard constraints, such 

as event intensiveness for each course and the capacity of lecture rooms. The problem is effectively 

addressed by accounting for hard constraint violations in the first stage and implementing a penalty 

function (penI) in the second stage. 

In conclusion, the numerical results strongly affirm the efficacy of this method. This research 

commenced with a brief overview of the scheduling problem, followed by a concise summary of 

techniques used to tackle the intricate task of scheduling university courses. Subsequently, we delved 

into the specifics of the university course scheduling problem, presenting the relevant model. Lastly, 

we reported the outcomes and insights gleaned from solving this challenging problem.  

References 

Carter, M. W., & Laporte, G. (1998). Recent developments in practical course timetabling. In 

Practice and Theory of Automated Timetabling II: Second International Conference, PATAT’97 

Toronto, Canada, August 20–22, 1997 Selected Papers 2 (pp. 3-19). Springer Berlin Heidelberg.  

Lach, G., & Lübbecke, M. E. (2012). Curriculum based course timetabling: new solutions to Udine 

benchmark instances. Annals of Operations Research, 194, 255-272.  

Lü, Z., & Hao, J. K. (2010). Adaptive tabu search for course timetabling. European Journal of 

Operational Research, 200(1), 235-244.  

DOĞAN, A., & YURTSAL, A. (2021). Developing a decision support system for exam scheduling 

problem using genetic algorithm. Eskişehir Technical University Journal of Science and Technology 

A-Applied Sciences and Engineering, 22(3), 274-289. 

Rezaeipanah, A., Matoori, S. S., & Ahmadi, G. (2021). A hybrid algorithm for the university course 

timetabling problem using the improved parallel genetic algorithm and local search. Applied 

Intelligence, 51(1), 467-492. 


