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ABSTRACT 

 

This research focuses on efficiently selecting supplier and distribution center 

locations in a stochastic supply chain environment. It formulates the problem as 

a multi-objective optimization model aiming to minimize establishment costs, 

inventory expenses, and transportation costs while considering capacity 

limitations. To solve this complex problem, the study uses a single-objective 

mixed integer programming model along with LP-metrics and the T-H method. 

The research conducts a thorough comparison of two different methods in terms 

of solution quality and computational efficiency, supported by statistical 

hypothesis testing. Additionally, multi-criteria decision-making techniques like 

VIKOR and PROMETHEE II are applied to rank the effectiveness of these 

methods. The proposed model is validated through thirty sample problems, 

demonstrating its reliability and suitability for addressing the  challenges of 

supplier and distribution center location selection in an uncertain supply chain 

environment. 
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1. Introduction 

The challenge of location and allocation within a supply chain network is a critical aspect that 

encompasses the determination of both site selection and inventory quantity (Ghasemi et al. 2023). 

Designing an effective network comprising suppliers, manufacturing plants, and distribution centers 

plays a pivotal role in achieving customer satisfaction (Reza Pourhassan et al. 2023).  

Addressing the intricacies of location and allocation in a supply chain network is a multifaceted 

challenge, as elucidated by Daneshvar et al. (2023). The nuanced process involves a careful balance, 

requiring astute decision-making not only in choosing optimal sites but also in fine-tuning inventory 
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levels to meet demand fluctuations (Momenitabar et al. 2023, Ghsemi et al. 2022). The significance of 

this challenge is underscored by its direct impact on customer satisfaction, a key objective emphasized 

by Goodarzian et al. (2023). In essence, the design of a cohesive network, integrating suppliers, 

manufacturing plants, and distribution centers, becomes a linchpin for achieving operational efficiency 

and ensuring customer expectations are met with precision and reliability (Momenitabar et al. 2022, 

Babaeinesami et al. 2022). 

In the past, significant research efforts have addressed this complex issue. For instance, Murtagh and 

Niwattisyawong (1982) introduced the location-allocation problem while accounting for capacity 

constraints. Owen and Daskin (1998) extended this work by considering time and uncertainty factors 

in their facility location models. Ho et al. (2008) explored the maximization of profit in location -

allocation problems by employing the Analytic Hierarchy Process (AHP) to rank quantitative and 

qualitative criteria.  

Furthermore, Manatkar et al. (2016) presented an optimization approach for an integrated inventory 

distribution model within a multi-echelon supply chain environment. Their model successfully 

minimized inventory holding, ordering, and transportation costs for both distributors and retailers, while 

also incorporating safety stock inventory through the application of practical constraints. These studies 

collectively contribute to the ongoing effort to enhance supply chain efficiency and effectiveness.  

Arabzad et al. (2015) introduced a multi-objective robust model aimed at efficiently allocating 

customer demand while simultaneously considering supplier selection and order allocation. Hajipour et 

al. (2016) presented a multi-objective multi-layer facility location allocation model, focusing on 

determining the optimal number of facilities and service allocation at each layer. Zhang et al. (2016) 

introduced a multi-objective optimization approach to determine the location of healthcare facilities 

with the goal of enhancing accessibility for people while reducing the population outside of coverage 

areas. In another context, Yu and Solvang (2017) tackled the facilities location-allocation problem in 

municipal solid waste management. Their approach factored in waste treatment costs, environmental 

impact, and greenhouse gas emissions in the design of solid waste networks. Tezenji et al. (2016) 

developed a bi-objective model aiming to minimize both the mean and variance of costs. Their work 

considered supplier selection and order allocation between suppliers and plants when designing supply 

chains. 

In this study, we extend Tezenji et al. (2016) model to a three-echelon supply chain by incorporating 

CO2 emissions into the network design. Our paper employs exact algorithms, specifically the TH 

method and LP-metric, to minimize the mean and variance of costs. Notably, our model introduces 

several novel features discussed below. 

Addressing environmental pollution is a crucial aspect of effective supply chain management. 

Transportation activities, in particular, stand out as major sources of pollution, with CO2 emissions 
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contributing to global warming and posing harmful effects on ecosystems and human health. Wang et 

al. (2011) considered two conflicting goals: optimizing the cost of the supply chain network while 

minimizing environmental pollution by reducing CO2 emissions in the forward network. In our model, 

we specifically define pollution as CO2 emissions between facilities, emphasizing the need to tackle 

this critical issue within supply chain design. 

This paper addresses the optimization of a single-period, single-product, three-echelon logistics 

network encompassing suppliers, plants/stores, and distribution centers. We develop a comprehensive 

model that simultaneously considers the location and allocation of suppliers and distribution centers 

while accounting for capacity constraints. Within this framework, each plant/store and distribution 

center operates based on the Economic Order Quantity (EOQ) model, allowing for backorder.  

In logistics network design, the uncertain nature of various parameters is a crucial concern, especially 

when considering environmental and economic factors. Our model tackles this challenge by 

incorporating stochastic costs, encompassing transportation, establishment, purchasing, inventory 

replenishment, holding, and shortage costs. This approach helps mitigate the impact of uncertainty on 

decision-making processes. 

Notably, our model also introduces the concept of allowable CO2 emissions between facilities, 

which serves to mitigate environmental pollution within the network. To achieve these objectives, we 

present a stochastic multi-objective mixed-integer non-linear programming model. The aim is to 

identify potential sites for locating supply and distribution facilities, with the overarching goal of 

minimizing the combined costs of transportation and fixed expenses. The structure of the studied supply 

chain is presented in Figure 1. 

 

Fig. 1. Network consisting of suppliers, plant and distribution centers. 

2. Proposed Multi-objective Non-Linear Programming (MONLP) Model 

In order to present the proposed MONLP model, first, the assumptions and notations are provided as 

follows: 
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Assumptions 

• All demands of plants/stores are satisfied by the suppliers; 

• All candidate suppliers and sites meet the initial criteria; 

• Each plant/store operates under the assumptions of the EOQ model with backordering allowed; 

• Repletion of each plant/store is done by a single supplier and holds inventory to meet the 

deterministic stationary demand; 

• Repletion of the distribution center is done by multiple plants/stores; 

• The capacity of supplier is limited and dependent on site and supplier ability; 

• Capacity of DC is limited and dependent on site and DC ability; 

• Fixed and variable transportation costs are dependent on establishment sites, suppliers and DCs. 

Sets 

I Set of plants/stores i ϵ{1,2,…,I} 

J Set of candidate suppliers j ϵ{1,2,…,J} 

K Set of candidate sites for suppliers k ϵ{1,2,…,K} 

M Set of candidate distribution centers (DCs) m ϵ{1,2,…,M} 

N Set of candidate sites for DCs n ϵ{1,2,…,N} 

G Set of transportation modes g ϵ{1,2,…,G} 

Parameters 

Di Annual demand of plants/stores i 

Dm Annual demand of DCs m 

bi Amount of backordering allowed for plant i 

bm Amount of backordering allowed for DC m 

diik Distance between plant/store i and supplier’s candidate site k 

diin Distance between plant/store i and DC’s candidate site n 

Pjk Capacity of supplier j at site k 

Pmn Capacity of DC m at DC’s candidate site n 

hi Inventory holding cost rate for each unit of inventory at plant/store i 

hm Inventory holding cost rate for DC m 

Oi Fixed ordering (Inventory replenishment) cost of plant/store i 

Om Fixed ordering (inventory replenishment) cost of DC m 

Si Storage cost rate for each unit commodity at plant/store i 

Sm Storage cost rate for each unit commodity at DC m 

cj Per-unit cost offered by supplier j 
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ci Per-unit cost offered by plant i 

fik Fixed Cost of established supplier j at candidate site k 

fmn Fixed cost of established DC m at DC’s candidate site n 

rijk 

Per-mile (distance based transportation) cost to plant/supplier i from supplier established 

at candidate site k 

rimn Per-mile (distance based transportation) cost to DC m from plant/store i 

tijk Fixed dispatch (transportation) cost to plant/store i from supplier j at site k 

timn Fixed dispatch (transportation) cost to DC m at site n from plant/store i 

eg CO2 emission rate of transportation mode g 

V Maximum CO2 emission of transportation mode g between supplier j and plant/store i 

W 
Maximum CO2 emission of transportation mode g between plant/store i and DC m 

at DC’s candidate cite n 

m The prefix indicates the mean of costs 

s The prefix indicates the standard deviation of costs 

Variables 

xjk 1 if supplier j is established at supplier's candidate site k, otherwise 0, 
 

xxmn 1 if DC m is established at DC's candidate site n, otherwise 0, 

yijk 1 if supplier j at candidate site k allocated to plant/store i, otherwise 0, 

yyimn if DC m at DC's candidate site n allocated to plant/store i 

Qi Order quantity of plant/store i 

Qm Order quantity of DC m 

Ti Di /Qi order interval 

Tm Dm /Qm order interval 

 

Now, the suggested model is given as follows:  

 

subject to 
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J 

 x jk  1 k  K 

j =1 

 
(1) 

M 

 xx mn    1 n  N 
m =1 

 
(2) 

K 

 x jk  1 j  J 
k =1 

 
(3) 

N 

 xxmn  1 m  M 
n=1 

 
(4) 

K J 

 yijk = 1 i  I 

k =1 j =1 

 
(5) 

N     M 

 yyimn = 1 i  I 
n=1 m=1 

 
(6) 

yijk   xjk i  I, j  J , k  K (7) 
I 

 Di yijk  Pjk x jk    j  J , k  K 
i=1 

 
(8) 

yyimn  xxmn i  I , m  M , n  N (9) 
M 

 Dm yyimn  Pmn xxmn m  M , n  N 
m=1 

 
(10) 

G 

eg yijk   V i  I , j  J , k  K 

g =1 

 
(11) 

G 

eg yyimn   W i  I , m  M , n  N 

g =1 

 
(12) 

xjk , xxmn , yijk , yyimn {0,1} (13) 

 

3. Proposed Solution Method 

The solution method has two parts: The multi-objective model and the comparison techniques. Herby, 

the solution method is presented. 

3.1. Multi-Objective Method 

The literature offers various approaches to address multi-objective problems, and this study employs 

two distinct methods, the LP-metric, and the T-H method, to solve the proposed Multi-Objective Non-

Linear Problem (MONLP). The LP-metric, as outlined in Wang et al. (2020), is a global criterion 

method that seeks to minimize the distance to the ideal objective vector. It is important to note that 

different metrics, such as the Lp-metric where 1 ≤ p ≤ ∞, can be applied within this method. 
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The second method falls under the category of fuzzy interactive methods and is considered effective 

due to its ability to incorporate decision-maker preferences interactively. Torabi and Hassini (2008) 

introduced an improved aggregation function designed to transform a multi-objective model into a 

single-objective one. This transformation guarantees the discovery of only Pareto-optimal (i.e., 

efficient) solutions. 

3.2. Comparison Method 

To facilitate a comparison of multi-objective methods, this study employs two distinct approaches: 

VIKOR and PROMETHEE. Both of these methods fall under the umbrella of Multi-Criteria Decision  

Making (MCDM) or Multi-Criteria Decision Analysis (MCDA), with the key difference being that 

VIKOR is categorized as a Compensatory method, whereas PROMETHEE belongs to the Outranking 

method category (Choukolaei et al. 2023). 

Herein, we provide an overview of the two proposed methods: 

VIKOR Method: VIKOR is a Multi-Criteria Decision Making (MCDM) or Multi-Criteria Decision 

Analysis (MCDA) method (Zeng et al., 2019). It was originally developed by Serafim Opricovic to 

address decision problems involving conflicting and non-commensurable criteria (i.e., criteria with 

different units of measurement). This method assumes that compromise is an acceptable approach for 

conflict resolution. It aims to find a solution that is closest to the ideal, taking into account all 

established criteria. VIKOR ranks alternatives and identifies the "compromise" solution, which is the 

one closest to the ideal among the alternatives considered. 

PROMETHEE Method: PROMETHEE is classified as an Outranking method designed for ranking 

a finite number of alternatives based on a finite number of criteria, which often exhibit conflicting 

characteristics (Tong et al., 2020, Ghasemi and Talebi Brijani, 2014). The PROMETHEE family 

includes several variations (PROMETHEE I, II, III, IV, V, and VI), with PROMETHEE II being 

particularly relevant for decision-making in process development and innovation (Tong et al., 2020). 

PROMETHEE II was developed to provide a comprehensive ranking of a finite set of alternatives, 

ranging from the best to the worst (Ghasemi et al. 2021). This ranking is calculated through pairwise 

comparisons of alternatives for each criterion, using preference functions. These preference functions 

are then aggregated using criteria weighting to determine a net outranking flow, thus generating a 

complete ranking of alternatives. 

Within a PROMETHEE model, each criterion used to rank alternatives is assigned a preference 

function by the decision maker. This preference function translates the difference (either positive or 

negative) in the criterion values between two alternatives in a pairwise comparison into a preference 

degree, typically ranging from zero to one. Typically, six preference functions are utilized: Usual 

criterion, Quasi-criterion, Criterion with linear preference, Level criterion, criterion with linear 

preference and indifference area, and Gaussian criteria. It is important to note that criteria weighting 
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in PROMETHEE involves the use of pairwise comparison methods, where the decision maker 

evaluates each possible pair of criteria and assigns a preference on a 9-point scale, ranging from equal 

preference to moderate, strong, very strong, and extreme preference. Once all pairwise comparisons 

are completed, scores for each criterion are aggregated and normalized. 

4. Results and Discussion 

In this section, a set of test problems has been formulated to assess the validity of the proposed model. 

To this end, we have created 30 sample problems of various sizes and conducted a comparative analysis 

of the results obtained using the T-H method and the LP-Metric method. This comparison is based on 

three key criteria, namely: "Value of the first objective," "Value of the second objective," and "CPU 

time." 

The parameter values utilized for solving the proposed model are outlined in Table 1. It is important 

to note that we have employed a Uniform distribution for all the parameters to ensure fairness and 

consistency in our analysis. Additionally, Table 2 provides an overview of the different sizes of model 

indices for the 30 sample problems presented for evaluation. 

Table 1. Parameters and values. 

Parameter Values Parameter Values Parameter Values 

Di Uniform(800- 1600) Pmn 
Uniform (10000- 

40000) 
cj Uniform(0. 05-02 

Dm Uniform(400- 1400) hi Uniform (5-10) cm Uniform(0. 5-1) 

bi Uniform(50- 100) hm Uniform (5-12) fik 
Uniform(5 0000-

100000) 

bm Uniform(50- 100) Ki Uniform (50-200) fmn Uniform(2 5000-75000) 

diik Unifo rm(50-150) Km Uniform (75-300) rijk Uniform(0. 5-3) 

diin Uniform(50-150) Si Uniform(10-20) rimn Uniform(0.5-3) 

Pjk 
Uniform(30000-

50000) 
Sm Uniform(15-25) tijk Uniform(500-1500) 

timn Uniform( 500-1500) Sm Uniform(1- 10) timn Uniform( 500-1500) 

eg Uniform( 10-100) cj Uniform(0. 0001-0.01) eg Uniform( 10-100) 

hi Uniform( 1-9) cm Uniform (0.0001-0.01) hi Uniform( 1-9) 

hm Uniform( 1-9) fik 
Uniform(10 0000-

500000) 
hm Uniform( 1-9) 

Ki Uniform( 10-100) fmn 
Uniform(10 0000-

500000) 
Ki Uniform( 10-100) 

Km Uniform(50-150) rijk Uniform(0.01-0.25) Km Uniform(50-150) 

Si Uniform(1-10) rimn Uniform(0.01-0.25) Si Uniform(1-10) 
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Table 2. Size of sample problems. 

Sample 

problem 
i j k 

Sample 

problem 
i j k 

Sample 

problem 
i j k 

Sample 

problem 
i j k 

Sample 

problem 
i j k 

1 1 2 3 7 2 2 4 13 2 3 6 19 3 2 5 25 3 4 5 

2 1 2 4 8 2 2 5 14 2 4 4 20 3 3 3 26 4 2 3 

3 1 2 5 9 2 2 6 15 2 4 5 21 3 3 4 27 4 3 3 

4 1 2 6 10 2 3 3 16 2 4 6 22 3 3 5 28 4 4 4 

5 2 2 2 11 2 3 4 17 3 2 3 23 3 4 3 29 4 4 5 

6 2 2 3 12 2 3 5 18 3 2 4 24 3 4 4 30 4 5 5 

Table 3 shows the results of sample problems defined in the previous section when solved by the 

LP-metric method and T-H method. The values of Z1, Z2 and CPU time for each method are shown in 

Table 3. 

Table 3. Results of sample problems based on LP-metric and T-H methods. 

Sample 

problem 

LP-Metric T-H Sample 

problem 

LP-Metric T-H 

Z1 Z2 t Z1 Z2 t Z1 Z2 t Z1 Z2 t 

1 164846 422904 544 241498 376214 639 16 173423 500312 1582 257632 406323 1338 

2 152490 448652 690 239823 380647 677 17 175865 495646 1621 259489 400654 1331 

3 160642 439062 496 247321 379211 709 18 170925 501248 1579 256302 401776 1328 

4 164206 442913 630 246402 379632 737 19 169953 520318 1734 254760 413365 1430 

5 149752 476429 719 233234 396956 833 20 174432 481428 1822 258034 399461 1550 

6 142646 503104 859 230541 403512 851 21 171787 507825 1910 253356 403587 1590 

7 145123 517842 927 232170 405726 903 22 167074 524692 2165 256247 408813 1730 

8 155085 501584 970 238653 400923 952 23 174246 489650 2157 259035 402313 1870 

9 164386 498788 1050 244219 399637 998 24 172866 520242 2342 257674 411158 1959 

10 163585 469442 990 243117 383574 1151 25 172102 536759 2479 258515 423154 2066 

11 165691 475302 114 245325 386231 1077 26 178271 518624 2866 269353 409865 2131 

12 16634 483642 1153 248696 392719 1089 27 177938 532240 2822 264867 422649 2224 

13 167230 488347 1275 253455 398945 1181 28 175944 541780 3053 263541 428973 2414 

14 163286 518643 1358 247117 408987 1215 29 173084 552434 3444 260112 436481 2504 

15 169192 509331 1423 255348 409469 1454 30 171994 559922 4251 258347 441687 2875 

To compare the two multi-objective optimization methods, we conducted an analysis of the means 

for 30 different sample problems across various criteria. To assess the quality of these means, we 

employed a quality of means test, as outlined by Du et al. (2017). This test involves formulating two 

hypotheses: the null hypothesis, which posits the equality of means, and the alternative hypothesis, 
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which suggests a significant difference between means. The results of the hypothesis testing are 

presented in Table 4. Based on the table and at a significance level of 95%, the null hypothesis is 

rejected for all criteria, including CPU time and the values of the two objectives.  

Table 4. Results of hypothesis testing. 

Multi-objective method Value of Z1 Value of Z2 CPU-Time 

LP-metric 159821.4 469345.3 2495.3 

T-H 236071.1 387604.5 2023.6 

Hypothesis testing result 
Rejecting the null 

hypothesis 

Rejecting the null 

hypothesis 

Rejecting the null 

hypothesis 

To compare the two aforementioned multi-objective methods, we employed the VIKOR and 

PROMETHEE II approaches. The VIKOR method, as depicted in Figure 2, was used to calculate the 

rankings of these two multi-objective optimization methods. The results of this ranking are presented in 

Table 5. According to the data in Table 5, it is evident that the T-H method outperforms the LP-metric 

method in the proposed model. It is worth noting that the criteria weighting process was carried out 

within a pairwise comparison matrix, the results of which are displayed in Table 6. 

Table 5. Results of VIKOR technique for comparing two multi-criteria optimization method. 

Multi-objective optimization method Qi Rank 

LP- Metric 0.34125645 2 

T-H 0.65874355 1 

Table 6. Pairwise comparison matrices’ results for criteria weighting. 

 Z1 Z2 CPU-time weight Normal weight 

Z1 1 1 5 1.7099 0.4545 

Z2 1 1 5 1.7099 0.4545 

CPU-time 1/5 1/5 1 0.3420 0.0910 

Furthermore, Moreover, the PROMETHEE II method, illustrated in Figure 3, was employed to 

calculate the rankings of the two multi-objective optimization methods. The outcomes of this 

ranking are summarized in Table 7. Based on the table, it is evident that the T-H method 

outperforms the LP-metric method within the proposed model. 

Table 7. Results of PROMETHEE II technique for comparing two multi-criteria optimization methods. 

Multi-objective optimization 

method 
+ −   Rank 

LP- Metric 0.1649 0.0983 0.0666 2 

T-H 0.2126 0.1029 0.1097 1 
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Consistently, the T-H method demonstrates superior performance in both of these approaches. 

To assess the impact of changes in problem size on the objective functions and CPU time, we 

conducted a comparative analysis of the values of Z1, Z2, and CPU time for 30 different models. 

These results are presented graphically in Figure 4. It is noteworthy that as the number of sample 

problems increases, so does the size of the problem. 

 

Fig. 4. Change in the value of Z1 , Z2 , and CPU-time by increasing the size of the model in two multi-objective 

optimization methods. 

5. Conclusion 

Location Efficiently managing location, allocation, and supplier selection within a supply chain network 

represents a pivotal challenge in the realm of supply chain management. This multifaceted problem 

involves not only determining the optimal sites for various facilities but also appropriately allocating 

inventory quantities. Additionally, supplier selection, a traditional yet continually relevant concern in 

supply chain management, plays a significant role in addressing these complex issues.  

This paper introduces a novel multi-objective model that tackles the integration of location-

allocation problems with supplier selection and order allocation for a three-echelon supply chain, 

encompassing suppliers and plants/stores. Moreover, an inventory policy is proposed as an integral 

component of the model. This model's overarching objective is to minimize the mean and variance 

associated with establishment costs, inventory expenses, and transportation outlays.  

To address this intricate problem, we employ the T-H model and LP-metrics model, treating the 

multi-objective problem as a single-objective mixed-integer programming model. Subsequently, we 
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conduct a comparative analysis of two distinct approaches: VIKOR and PROMETHEE II methods. 

This comparison hinges on evaluating solution quality and computational efficiency.  

Incorporating insights gained from thirty sample problems, our findings reveal that the T-H method 

consistently outperforms the LP-metric approach in terms of solution quality. This study underscores 

the importance of selecting the appropriate optimization technique when addressing the intricate 

dynamics of supply chain management, shedding light on the superior performance of the T-H model 

in this context. 
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