International Journal of

Applied Optimization Studies

"

[JAOS

STINYE
UNIVERSITESI
ISTANBUL

iSU

Multi-Objective Optimization of Supplier and Distribution

Center Location Selection with Inventory Allocation in an

Uncertain Environment Considering CO2 Emissions

Peiman Ghasemi®”, Umar Muhammad Modibbo?, Irfan Ali3

*IUniversity of Vienna, Department of Business Decisions and Analytics, Kolingasse 14-16, 1090 Vienna,

Austria

2Department of Statistics and Operations Research, Aligarh Muslim University, India

3Department of Statistics and Operations Research, Modibbo Adama University, Yola, Nigeria

*E-mail (corresponding author): peiman.ghasemi@univie.ac.at

ABSTRACT

This research focuses on efficiently selecting supplier and distribution center
locations in a stochastic supply chain environment. It formulates the problem as
a multi-objective optimization model aiming to minimize establishment costs,
inventory expenses, and transportation costs while considering capacity
limitations. To solve this complex problem, the study uses a single -objective
mixed integer programming model along with LP-metrics and the T-H method.
The research conducts a thorough comparison of two different methods in terms
of solution quality and computational efficiency, supported by statistical
hypothesis testing. Additionally, multi-criteria decision-making techniques like
VIKOR and PROMETHEE I are applied to rank the effectiveness of these
methods. The proposed model is validated through thirty sample problems,
demonstrating its reliability and suitability for addressing the challenges of
supplier and distribution center location selection in an uncertain supply chain

environment.
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1. Introduction

The challenge of location and allocation within a supply chain network is a critical aspect that
encompasses the determination of both site selection and inventory quantity (Ghasemi et al. 2023).
Designing an effective network comprising suppliers, manufacturing plants, and distribution centers
plays a pivotal role in achieving customer satisfaction (Reza Pourhassan et al. 2023).

Addressing the intricacies of location and allocation in a supply chain network is a multifaceted
challenge, as elucidated by Daneshvar et al. (2023). The nuanced process involves a careful balance,

requiring astute decision-making not only in choosing optimal sites but also in fine-tuning inventory
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levels to meet demand fluctuations (Momenitabar et al. 2023, Ghsemi et al. 2022). The significance of
thischallenge is underscored by its direct impact on customer satisfaction, a key objective emphasized
by Goodarzian et al. (2023). In essence, the design of a cohesive network, integrating suppliers,
manufacturing plants, and distribution centers, becomes a linchpin for achieving operational efficiency
and ensuring customer expectations are met with precision and reliability (Momenitabar et al. 2022,
Babaeinesami et al. 2022).

In the past, significant research efforts have addressed this complexissue. For instance, Murtagh and
Niwattisyawong (1982) introduced the location-allocation problem while accounting for capacity
constraints. Owen and Daskin (1998) extended this work by considering time and uncertainty factors
in their facility location models. Ho et al. (2008) explored the maximization of profit in location-
allocation problems by employing the Analytic Hierarchy Process (AHP) to rank quantitative and
qualitative criteria.

Furthermore, Manatkar et al. (2016) presented an optimization approach for an integrated inventory
distribution model within a multi-echelon supply chain environment. Their model successfully
minimized inventory holding, ordering, and transportation costs for both distributors and retailers, while
also incorporating safety stock inventory through the application of practical constraints. These studies
collectively contribute to the ongoing effort to enhance supply chain efficiency and effectiveness.

Arabzad et al. (2015) introduced a multi-objective robust model aimed at efficiently allocating
customer demand while simultaneously considering supplier selection and order allocation. Hajipour et
al. (2016) presented a multi-objective multi-layer facility location allocation model, focusing on
determining the optimal number of facilities and service allocation at each layer. Zhang et al. (2016)
introduced a multi-objective optimization approach to determine the location of healthcare facilities
with the goal of enhancing accessibility for people while reducing the population outside of coverage
areas. In another context, Yu and Solvang (2017) tackled the facilities location -allocation problem in
municipal solid waste management. Their approach factored in waste treatment costs, environmental
impact, and greenhouse gas emissions in the design of solid waste networks. Tezenji et al. (2016)
developed a bi-objective model aiming to minimize both the mean and variance of costs. Their work
considered supplier selection and order allocation between suppliers and plants when designing supply
chains.

In this study, we extend Tezenji et al. (2016) model to a three-echelon supply chain by incorporating
CO2 emissions into the network design. Our paper employs exact algorithms, specifically the TH
method and LP-metric, to minimize the mean and variance of costs. Notably, our model introduces
several novel features discussed below.

Addressing environmental pollution is a crucial aspect of effective supply chain management.
Transportation activities, in particular, stand out as major sources of pollution, with CO2 emissions
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contributing to global warming and posing harmful effects on ecosystems and human health. Wang et
al. (2011) considered two conflicting goals: optimizing the cost of the supply chain network while
minimizing environmental pollution by reducing CO2 emissions in the forward network. In our model,
we specifically define pollution as CO2 emissions between facilities, emphasizing the need to tackle
this critical issue within supply chain design.

This paper addresses the optimization of a single-period, single-product, three-echelon logistics
network encompassing suppliers, plants/stores, and distribution centers. We develop a comprehensive
model that simultaneously considers the location and allocation of suppliers and distribution centers
while accounting for capacity constraints. Within this framework, each plant/store and distribution
center operates based on the Economic Order Quantity (EOQ) model, allowing for backorder.

In logistics network design, the uncertain nature of various parameters is a crucial concern, especially
when considering environmental and economic factors. Our model tackles this challenge by
incorporating stochastic costs, encompassing transportation, establishment, purchasing, inventory
replenishment, holding, and shortage costs. This approach helps mitigate the impact of uncertainty on
decision-making processes.

Notably, our model also introduces the concept of allowable CO2 emissions between facilities,
which serves to mitigate environmental pollution within the network. To achieve these objectives, we
present a stochastic multi-objective mixed-integer non-linear programming model. The aim is to
identify potential sites for locating supply and distribution facilities, with the overarching goal of
minimizing the combined costs of transportation and fixed expenses. The structure of the studied supply

chain is presented in Figure 1.

Potential
Supplier

Plant/store

Sf

Potential
Distribution M /
center

Road ———————»

Fig. 1. Network consisting of suppliers, plant and distribution centers.

2. Proposed Multi-objective Non-Linear Programming (MONLP) Model
In order to present the proposed MONLP model, first, the assumptions and notations are provided as

follows:
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Assumptions

All demands of plants/stores are satisfied by the suppliers;

All candidate suppliers and sites meet the initial criteria;

Each plant/store operates under the assumptions of the EOQ model with backordering allowed:;
Repletion of each plant/store is done by a single supplier and holds inventory to meet the
deterministic stationary demand,;

Repletion of the distribution center is done by multiple plants/stores;

The capacity of supplier is limited and dependent on site and supplier ability;

Capacity of DC is limited and dependent on site and DC ability;

Fixed and variable transportation costs are dependent on establishment sites, suppliers and DCs.

Sets
I Set of plants/stores i €{1,2,...,1}
J Set of candidate suppliers j €{1,2,...,J}
K Set of candidate sites for suppliers k €{1,2,...,K}
M Set of candidate distribution centers (DCs) m €{1,2,...,M}
N Set of candidate sites for DCs n €{1,2,...,N}
G Set of transportation modes g €{1,2,...,G}
Parameters
Di Annual demand of plants/stores i
Dnm Annual demand of DCs m
bi Amount of backordering allowed for plant i
bm Amount of backordering allowed for DC m
diik Distance between plant/store i and supplier’s candidate site k
diin Distance between plant/store i and DC’s candidate site n
Pik Capacity of supplier j at site k
Prn Capacity of DC m at DC’s candidate site n
hi Inventory holding cost rate for each unit of inventory at plant/store i
hm Inventory holding cost rate for DC m
Oi Fixed ordering (Inventory replenishment) cost of plant/store i
Om Fixed ordering (inventory replenishment) cost of DC m
Si Storage cost rate for each unit commodity at plant/store i
Sm Storage cost rate for each unit commodity at DC m
Cj Per-unit cost offered by supplier j

155

2023, VOL. 3, NO. 1, PAGES 152-165.



N International Journal of s e |ISTINYE
: Applied Optimization Studies ISU oniversiTEsi

[JAOS reneet
Ci Per-unit cost offered by plant i
fi Fixed Cost of established supplier j at candidate site k
fn Fixed cost of established DC m at DC’s candidate site n
Per-mile (distance based transportation) cost to plant/supplier i from supplier established
ik at candidate site k
Fimn Per-mile (distance based transportation) cost to DC m from plant/store i
tijk Fixed dispatch (transportation) cost to plant/store i from supplier j at site k
timn Fixed dispatch (transportation) cost to DC m at site n from plant/store i
€g CO2 emission rate of transportation mode g
\Y Maximum CO2 emission of transportation mode g between supplier j and plant/store i
w Maximum CO2 emission of transportation mode g between plant/store i and DC m
atDC’s candidate cite n
m The prefix indicates the mean of costs
S The prefix indicates the standard deviation of costs
Variables
Xik 1 if supplier j is established at supplier's candidate site k, otherwise 0,
XXmn 1 if DC m is established at DC's candidate site n, otherwise 0,
Yiik 1 if supplier j at candidate site k allocated to plant/store i, otherwise 0,
YYimn if DC m at DC's candidate site n allocated to plant/store i
Qi Order quantity of plant/store i
Qm Order quantity of DC m
Ti Di/Qi order interval
T D /Qm order interval

Now, the suggested model is given as follows:

IDIJIZ"_’—ZZZ(;J D+ (e, + 42, ), +Z(;£OT+‘H i@ ( )+iZH x,
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|
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M

Z Dm YWinn < Pmn XXinn vmeM ,Ne N (10)
mgl

Dy <V Viel,jedkeK "
g=1

G

D e VWim <W  Viel,meM,neN 2
g=1

Xjics XXmn s Yijko yyimne{oal} (13)

3. Proposed Solution Method
The solution method has two parts: The multi-objective model and the comparison techniques. Herby,

the solution method is presented.

3.1. Multi-Objective Method

The literature offers various approaches to address multi-objective problems, and this study employs
two distinct methods, the LP-metric, and the T-H method, to solve the proposed Multi-Objective Non-
Linear Problem (MONLP). The LP-metric, as outlined in Wang et al. (2020), is a global criterion
method that seeks to minimize the distance to the ideal objective vector. It is important to note that
different metrics, such as the Lp-metric where 1 < p < oo, can be applied within this method.
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The second method falls under the category of fuzzy interactive methods and is considered effective
due to its ability to incorporate decision-maker preferences interactively. Torabi and Hassini (2008)
introduced an improved aggregation function designed to transform a multi-objective model into a
single-objective one. This transformation guarantees the discovery of only Pareto-optimal (i.e.,
efficient) solutions.

3.2. Comparison Method

To facilitate a comparison of multi-objective methods, this study employs two distinct approaches:
VIKOR and PROMETHEE. Both of these methods fall under the umbrella of Multi-Criteria Decision
Making (MCDM) or Multi-Criteria Decision Analysis (MCDA), with the key difference being that
VIKOR is categorized as a Compensatory method, whereas PROMETHEE belongs to the Outranking
method category (Choukolaei et al. 2023).

Herein, we provide an overview of the two proposed methods:

VIKOR Method: VIKOR is a Multi-Criteria Decision Making (MCDM) or Multi-Criteria Decision
Analysis (MCDA) method (Zeng et al., 2019). It was originally developed by Serafim Opricovic to
address decision problems involving conflicting and non-commensurable criteria (i.e., criteria with
different units of measurement). This method assumes that compromise is an acceptable approach for
conflict resolution. It aims to find a solution that is closest to the ideal, taking into account all
established criteria. VIKOR ranks alternatives and identifies the "compromise" solution, which is the
one closest to the ideal among the alternatives considered.

PROMETHEE Method: PROMETHEE is classified as an Outranking method designed for ranking
a finite number of alternatives based on a finite number of criteria, which often exhibit conflicting
characteristics (Tong et al., 2020, Ghasemi and Talebi Brijani, 2014). The PROMETHEE family
includes several variations (PROMETHEE |, Il, 111, 1V, V, and VI), with PROMETHEE Il being
particularly relevant for decision-making in process development and innovation (Tong et al., 2020).

PROMETHEE Il was developed to provide a comprehensive ranking of a finite set of alternatives,
ranging from the best to the worst (Ghasemi et al. 2021). This ranking is calculated through pairwise
comparisons of alternatives for each criterion, using preference functions. These preference functions
are then aggregated using criteria weighting to determine a net outranking flow, thus generating a
complete ranking of alternatives.

Within a PROMETHEE model, each criterion used to rank alternatives is assigned a preference
function by the decision maker. This preference function translates the difference (either positive or
negative) in the criterion values between two alternatives in a pairwise comparison into a preference
degree, typically ranging from zero to one. Typically, six preference functions are utilized: Usual
criterion, Quasi-criterion, Criterion with linear preference, Level criterion, criterion with linear

preference and indifference area, and Gaussian criteria. It is important to note that criteria weighting
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in PROMETHEE involves the use of pairwise comparison methods, where the decision maker
evaluates each possible pair of criteria and assigns a preference on a 9-point scale, ranging from equal
preference to moderate, strong, very strong, and extreme preference. Once all pairwise comparisons

are completed, scores for each criterion are aggregated and normalized.

4. Results and Discussion

In thissection, a set of test problems has been formulated to assess the validity of the proposed model.
To thisend, we have created 30 sample problems of various sizes and conducted a comparative analysis
of the results obtained using the T-H method and the LP-Metric method. This comparison is based on
three key criteria, namely: "Value of the first objective," "Value of the second objective," and "CPU
time."

The parameter values utilized for solving the proposed model are outlined in Table 1. It is important
to note that we have employed a Uniform distribution for all the parameters to ensure fairness and
consistency in our analysis. Additionally, Table 2 provides an overview of the different sizes of model
indices for the 30 sample problems presented for evaluation.

Table 1. Parameters and values.

Parameter Values Parameter Values Parameter Values
) Uniform(10000- )
Di Uniform(800-1600) Prmn Lej Uniform(0.05-02
40000)
Dnm Uniform(400-1400) Lhi Uniform(5-10) Lem Uniform(0.5-1)
] ) Uniform(50000-
bi Uniform(50-100) Hhm Uniform(5-12) Lfik
100000)
bm Uniform(50-100) LK Uniform(50-200) umn  Uniform(25000-75000)
dii Uniform(50-150) HKm Uniform(75-300) Lrijk Uniform(0.5-3)
diin Uniform(50-150) usi Uniform(10-20) Lrimn Uniform(0.5-3)
Uniform(30000- ] .
Pik Lsm Uniform(15-25) tiji Uniform(500-1500)
50000)
timn Uniform(500-1500) Osm Uniform(1-10) timn Uniform(500-1500)
€y Uniform(10-100) Og; Uniform(0.0001-0.01) €g Uniform(10-100)
Chj Uniform(1-9) Ocm Uniform(0.0001-0.01) Ghj Uniform(1-9)
] Uniform(100000- .
Ghm Uniform(1-9) Gik Ghm Uniform(1-9)
500000)
] Uniform(100000- .
OKi Uniform(10-100) Gimn Oki Uniform(10-100)
500000)
OKm Uniform(50-150) Orijk Uniform(0.01-0.25) OKm Uniform(50-150)
Osi Uniform(1-10) Grimn Uniform(0.01-0.25) Osi Uniform(1-10)
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Table 2. Size of sample problems.

Sample | | | . Sample | |. Sample | | . Sample | | . Sample

problem LIk problem R problem Pk problem K problem Pk
1 1{ 2] 3 7 2 |24 13 23| 6 19 31215 25 31| 4|5
2 11 2| 4 8 2 1215 14 204 4 20 31313 26 41 213
3 11 2] 5 9 2 1216 15 21415 21 3131|4 27 41313
4 11 2| 6 10 2 1313 16 21416 22 3131|5 28 4 4] 4
5 2| 2| 2 11 2 1314 17 312 3 23 3143 29 4| 415
6 2| 2| 3 12 2 1315 18 32| 4 24 314 |4 30 4 515

Table 3 shows the results of sample problems defined in the previous section when solved by the
LP-metric method and T-H method. The values of Z1, Z2 and CPU time for each method are shown in
Table 3.

Table 3. Results of sample problems based on LP-metric and T-H methods.

Sample LP-Metric T-H Sample LP-Metric T-H

problem Z1 Z2 t Z1 Z2 t | problem Z1 Z2 t Z1 Z2 t
1 164846(422904| 544 |241498(376214| 639 16 173423 1500312(1582|257632 |406323|1338
2 152490 (448652 | 690 |239823|380647| 677 17  |175865 [495646(1621|259489 |400654 [1331
3 160642439062 | 496 (247321(379211| 709 18 170925 (501248|1579(256302 |401776 (1328
4 164206 (442913 | 630 |246402|379632| 737 19  |169953 [520318|1734|254760 |413365 [1430
5 149752 (476429 | 719 |233234|396956| 833 20 |174432|481428(1822(258034 |399461 (1550
6 142646503104 | 859 |230541(403512| 851 21 171787 [507825|1910(253356 |403587 |1590
7 145123|517842| 927 |232170|405726| 903 22 |167074 |524692(2165(256247 |408813 [1730
8 155085(501584 | 970 |238653|400923| 952 23 |174246 4896502157 (259035 |402313 (1870
9 164386 (4987881050 [244219|399637| 998 24 |172866 (520242 (2342(257674 1411158 [1959
10  |163585|469442| 990 (243117|383574|1151| 25 |172102|536759(2479(258515 |423154 2066
11  |165691|475302| 114 (245325|386231|1077| 26 |178271|518624(2866(269353 |409865 2131
12 16634 (4836421153 |248696(|392719(1089 | 27  [177938|532240(2822|264867 (422649 2224
13 |167230|488347|1275 253455|398945|1181| 28  |175944 |541780(3053(263541 |428973 2414
14 163286(518643 (1358 |247117|408987|1215 29 173084 (552434|3444|260112 |436481 |2504
15 |169192|509331|1423 (255348|409469|1454| 30 |171994 |559922 (4251 (258347 |441687 2875

To compare the two multi-objective optimization methods, we conducted an analysis of the means
for 30 different sample problems across various criteria. To assess the quality of these means, we
employed a quality of means test, as outlined by Du et al. (2017). This test involves formulating two

hypotheses: the null hypothesis, which posits the equality of means, and the alternative hypothesis,
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which suggests a significant difference between means. The results of the hypothesis testing are
presented in Table 4. Based on the table and at a significance level of 95%, the null hypothesis is

rejected for all criteria, including CPU time and the values of the two objectives.

Table 4. Results of hypothesis testing.

Multi-objective method Value of Z1 Value of Z2 CPU-Time
LP-metric 159821.4 469345.3 2495.3
T-H 236071.1 387604.5 2023.6

. . Rejecting the  null Rejecting the  null Rejecting the  null
Hypothesis testing result

hypothesis hypothesis hypothesis

To compare the two aforementioned multi-objective methods, we employed the VIKOR and
PROMETHEE |1 approaches. The VIKOR method, as depicted in Figure 2, was used to calculate the
rankings of these two multi-objective optimization methods. The results of thisranking are presented in
Table 5. According to the data in Table 5, it is evident that the T-H method outperformsthe LP-metric
method in the proposed model. It is worth noting that the criteria weighting process was carried out

within a pairwise comparison matrix, the results of which are displayed in Table 6.

Table 5. Results of VIKOR technique for comparing two multi-criteria optimization method.

Multi-objective optimization method Qi Rank
LP- Metric 0.34125645 2
T-H 0.65874355 1

Table 6. Pairwise comparison matrices’ results for criteria weighting.
Z1 Z2  CPU-time weight Normal weight

Z1 1 1 5 1.7099 0.4545
Z2 1 1 5 1.7099 0.4545
CPU-time 1/5 1/5 1 0.3420 0.0910

Furthermore, Moreover, the PROMETHEE Il method, illustrated in Figure 3, was employed to
calculate the rankings of the two multi-objective optimization methods. The outcomes of this
ranking are summarized in Table 7. Based on the table, it is evident that the T-H method

outperforms the LP-metric method within the proposed model.

Table 7. Results of PROMETHEE Il technique for comparing two multi-criteria optimization methods.

Multi-objective optimization
ot b ® Rank

method
LP- Metric 0.1649 0.0983 0.0666 2
T-H 0.2126 0.1029 0.1097 1
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Consistently, the T-H method demonstrates superior performance in both of these approaches.
To assess the impact of changes in problem size on the objective functionsand CPU time, we
conducted a comparative analysis of the values of Z1, Z2, and CPU time for 30 different models.
These resultsare presented graphically in Figure 4. It is noteworthy that as the number of sample

problems increases, so does the size of the problem.

250000 600000

200000 _’_\/_N—w—/\ M
150000 S\ 400000 e

100000 200000
50000

0 0
1357 911131517192123252729 1 357 911131517192123252729

= 71 (Lp-metric) === Z1 (T-H) w72 (Lp-metric) =72 (T-H)

6000

4000
2000 /

0 e

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

m== CPU-time (LP-metric) === CPU-time (T-H)

Fig. 4. Change in the value of Z1, Z2 , and CPU-time by increasing the size of the model in twomulti-objective
optimization methods.

5. Conclusion

Location Efficiently managing location, allocation, and supplier selection within a supply chain network
represents a pivotal challenge in the realm of supply chain management. This multifaceted problem
involves not only determining the optimal sites for various facilities but also appropriately allocating
inventory quantities. Additionally, supplier selection, a traditional yet continually relevant concern in
supply chain management, plays a significant role in addressing these complex issues.

This paper introduces a novel multi-objective model that tackles the integration of location-
allocation problems with supplier selection and order allocation for a three-echelon supply chain,
encompassing suppliers and plants/stores. Moreover, an inventory policy is proposed as an integral
component of the model. This model's overarching objective is to minimize the mean and variance
associated with establishment costs, inventory expenses, and transportation outlays.

To address this intricate problem, we employ the T-H model and LP-metrics model, treating the

multi-objective problem as a single-objective mixed-integer programming model. Subsequently, we
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conduct a comparative analysis of two distinct approaches: VIKOR and PROMETHEE Il methods.
This comparison hinges on evaluating solution quality and computational efficiency.

Incorporating insights gained from thirty sample problems, our findings reveal that the T-H method
consistently outperforms the LP-metric approach in terms of solution quality. This study underscores
the importance of selecting the appropriate optimization technique when addressing the intricate
dynamics of supply chain management, shedding light on the superior performance of the T-H model

in this context.
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